
1.2. Arithmetic functions. An arithmetic function is a complex valued function defined

on the set of positive integers, or in other words, simply a sequence of complex numbers.

Definition 1.16. An arithmetic function is a function

f : Z� Ñ C

where Z� is the set of all positive integers.

In principle one could assign any complex number as the value of the function at an

positive integer. We look at some examples.

Example 1.17. Here are some very simple examples.

(1) For every complex number c P C, we can define the constant function

fc : Z� Ñ C given by fcpnq � c for every n P Z�.

In particular, we denote the function which takes constant values 1 by I.

(2) Another function which will show up later will be the function I defined by

Ipnq �
#

1 if n � 1;

0 if n ¡ 1.

However we are mainly interested in arithmetic functions with a meaningful assignment

of values, most of which take values in integers.

Example 1.18. Here are some naturally defined arithmetic functions.

 For any n P Z�, define νpnq to be the number of positive divisors of n;

 For any n P Z�, define σpnq to be the sum of the positive divisors of n.

By virtue of the unique factorisation, we can obtain the following formulas for the two

functions:

Proposition 1.19. Assume the integer n ¡ 1 has the prime decomposition

n � pa11 p
a2
2 � � � pall ,

where p1, p2, � � � , pl are distinct positive primes. Then we have

νpnq � pa1 � 1qpa2 � 1q � � � pal � 1q;

σpnq � pa1�1
1 � 1

p1 � 1
� p

a2�1
2 � 1

p2 � 1
� � � p

al�1
l � 1

pl � 1
.

7



Proof. To prove the first formula, we notice that m � n iff

m � pb11 p
b2
2 � � � pbll

with 0 ¤ bi ¤ ai for every i. Thus the positive divisors of n are one-to-one correspondent

to the n-tuples pb1, b2, � � � , blq with 0 ¤ bi ¤ ai for every i, and there are exactly

pa1 � 1qpa2 � 1q � � � pal � 1q
such n-tuples.

To prove the second formula, we notice that

σpnq �
¸

1¤b1¤a1,1¤b2¤a2,��� ,1¤bl¤al

pb11 p
b2
2 � � � pbll

where the sum is over the above set of n-tuples. Thus we can see that

σpnq � p1 � p1 � p21 � � � � � pa11 qp1 � p2 � p22 � � � � � pa22 q � � � p1 � pl � p2l � � � � � pall q
from which the result follows by applying the summation formula for geometric series. �

Next example is another arithmetic function which will play an important role in Möbius

inversion theorem. For convenience, we say an integer n square-free if it is not divisible by

the square of any integer greater than 1. An equivalent characterisation: n is square-free

iff n does not have repeated prime factors in its prime decomposition. In other words, n

is square-free iff n is the product of finitely many distinct primes.

Definition 1.20. For any positive integer n, we define the Möbius µ-function by

µpnq �

$''&
''%

1 if n � 1;

0 if n is not square-free;

p�1ql if n � p1p2 � � � pl is the product of l distinct primes.

We prove the following property of Möbius µ-function. Again, the unique factorisation is

the key to the proof.

Proposition 1.21. For any n P Z�, we have

¸
d�n

µpdq �
#

1 if n � 1

0 if n ¡ 1,

where the summation runs over all positive divisors of n.

Proof. The case of n � 1 is clear. Now we assume n ¥ 2. Let n � pa11 p
a2
2 � � � pall be

the prime decomposition of n for some l P Z�. The definition of µ-function shows that

only those divisors d of n which do not have repeated prime factors contribute to the

summation. For any i with 0 ¤ i ¤ l, we consider the number of divisors d of n which
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are products of i distinct primes. Since the prime factors of d form a subset of those of n,

there are exactly
�
l
i

�
choices for such d, each of which contributes p�1qi to µpnq. Therefore

we have ¸
d�n

µpdq �
�
l

0



�
�
l

1



�
�
l

2



�
�
l

3



� � � � � p�1ql

�
l

l




� p1 � 1ql � 0.

�

The definition of the µ-function seems somewhat artificial at the first glance. However

its significance will not be revealed until we introduce Dirichlet products of arithmetic

functions.

9


