
1.3. Dirichlet product and Möbius inversion. Dirichlet product will be a handy tool

for establishing Möbius inversion.

Definition 1.22. Let f, g : Z� Ñ C be two arithmetic functions. The Dirichlet product

(or Dirichlet convolution) of f and g is the arithmetic function f �g defined by the formula

pf � gqpnq �
¸

d1d2�n

fpd1qgpd2q

where the sum runs over all pairs pd1, d2q of positive integers such that d1d2 � n.

Remark 1.23. Another equivalent way of writing the formula is

pf � gqpnq �
¸
d�n

fpdqgpn
d
q,

where the sum is over all positive divisors d of n. We will use both formulas in the

following discussion.

The Dirichlet product has many nice properties. In particular, it is commutative and

associative, as we expect for any “product”.

Lemma 1.24. Let f, g, h : Z� Ñ C be arithmetic functions, then

f � g � g � f
pf � gq � h � f � pg � hq.

Proof. Commutativity is immediate. Indeed, for any n P Z�, we have

pf � gqpnq �
¸

d1d2�n

fpd1qgpd2q �
¸

d2d1�n

gpd2qfpd1q � pg � fqpnq.

Associativity requires some more manipulations. For any n P Z�, we show that both

expressions ppf � gq � hqpnq and pf � pg � hqqpnq can be transformed into the summation°
d1d2d3�n

fpd1qgpd2qhpd3q, where the sum runs over all 3-tuples pd1, d2, d3q of positive

integers such that d1d2d3 � n.

For the left-hand side, we have

ppf � gq � hqpnq �
¸

d0d3�n

pf � gqpd0qhpd3q

�
¸

d0d3�n

� ¸
d1d2�d0

fpd1qgpd2q
�
hpd3q

�
¸

d1d2d3�n

fpd1qgpd2qhpd3q.

The computation for the right-hand side is similar and gives the same expression. So we

are done. �
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Example 1.25. Here are some simple examples of Dirichlet products:

(1) Let I be the function defined in Example 1.17 and f an arbitrary arithmetic

function, then

I � f � f � I � f ;

(2) Let I be the function with constant value 1 and f an arbitrary arithmetic function,

then for every n P Z�, we have

pf � Iqpnq �
¸
d�n

fpdq;

(3) In particular, let f be the µ-function defined in Definition 1.20, then by Proposition

1.21 we have

µ � I � I � µ � I.

We are ready to prove the following theorem:

Theorem 1.26 (Möbius Inversion Theorem). Let f : Z� Ñ C be an arithmetic function.

If we define the arithmetic function F : Z� Ñ C by

F pnq �
¸
d�n

fpdq,

then we have

fpnq �
¸
d�n

µpdqF pn
d
q.

Proof. We use the full power of Lemma 1.24 and Example 1.25. The definition of F shows

F � f � I. Then we have

f � f � I � f � pI � µq � pf � Iq � µ � F � µ � µ � F,
which is what we want by Remark 1.23. �

As an immediate application of the theorem, we use it to obtain a formula for yet another

important arithmetic function: the Euler φ-function.

Definition 1.27. The Euler φ-function is defined to be the following arithmetic function:

for any n P Z�, φpnq is the number of integers m with 1 ¤ m ¤ n and hcfpm,nq � 1.

We first prove the following simple property of the φ-function.

Proposition 1.28. For any n P Z�, the Euler φ-function satisfies the identity¸
d�n

φpdq � n.
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Proof. Consider the n rational numbers

1

n
,

2

n
, � � � , n� 1

n
,
n

n
.

Reduce each to lowest terms; i.e. perform cancellations to express each number as a

quotient of relatively prime integers. The denominators will all be divisors of n. If d � n,

there are exactly φpdq of our numbers whose denominators are equal to d after reducing

to lowest terms. Thus they sum up to n, as desired. �

We can obtain a formula for the φ-function by Möbius inversion theorem.

Proposition 1.29. Let n � pa11 p
a2
2 � � � pall be the factorisation of n P Z� where p1, p2, � � � , pl

are distinct primes, then

φpnq � n

�
1� 1

p1


�
1� 1

p2



� � �

�
1� 1

pl



.

Proof. By Theorem 1.26 and Proposition 1.28, we have that

φpnq �
¸
d�n

µpdqn
d

� n�
¸
i

n

pi
�
¸
i j

n

pipj
�

¸
i j k

n

pipjpk
� � � �

� n

�
1� 1

p1


�
1� 1

p2



� � �

�
1� 1

pl



,

as desired. �

Remark 1.30. Using the same factorisation of n, we can also write the formula for Euler

φ-function in a slightly different form:

φpnq � pa1�1
1 pa2�1

2 � � � pal�1
l pp1 � 1qpp2 � 1q � � � ppl � 1q.

Indeed, we can substitute n by its prime factorisation in the previous formula and cancel

all denominators with the corresponding prime factors in n to get this formula. Caution:

it does not imply that each pi is still a prime factor of φpnq because the exponent ai � 1

could be zero.
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