1.3. Dirichlet product and Möbius inversion. Dirichlet product will be a handy tool for establishing Möbius inversion.

Definition 1.22. Let $f, g : \mathbb{Z}^+ \to \mathbb{C}$ be two arithmetic functions. The *Dirichlet product* (or *Dirichlet convolution*) of f and g is the arithmetic function f * g defined by the formula

$$(f * g)(n) = \sum_{d_1d_2=n} f(d_1)g(d_2)$$

where the sum runs over all pairs (d_1, d_2) of positive integers such that $d_1d_2 = n$.

Remark 1.23. Another equivalent way of writing the formula is

$$(f * g)(n) = \sum_{d \mid n} f(d)g(\frac{n}{d}),$$

where the sum is over all positive divisors d of n. We will use both formulas in the following discussion.

The Dirichlet product has many nice properties. In particular, it is commutative and associative, as we expect for any "product".

Lemma 1.24. Let $f, g, h : \mathbb{Z}^+ \to \mathbb{C}$ be arithmetic functions, then

$$f * g = g * f$$
$$(f * g) * h = f * (g * h).$$

Proof. Commutativity is immediate. Indeed, for any $n \in \mathbb{Z}^+$, we have

$$(f * g)(n) = \sum_{d_1d_2=n} f(d_1)g(d_2) = \sum_{d_2d_1=n} g(d_2)f(d_1) = (g * f)(n).$$

Associativity requires some more manipulations. For any $n \in \mathbb{Z}^+$, we show that both expressions ((f * g) * h)(n) and (f * (g * h))(n) can be transformed into the summation $\sum_{d_1d_2d_3=n} f(d_1)g(d_2)h(d_3)$, where the sum runs over all 3-tuples (d_1, d_2, d_3) of positive integers such that $d_1d_2d_3 = n$.

For the left-hand side, we have

$$((f * g) * h)(n) = \sum_{d_0d_3=n} (f * g)(d_0)h(d_3)$$
$$= \sum_{d_0d_3=n} \left(\sum_{d_1d_2=d_0} f(d_1)g(d_2)\right)h(d_3)$$
$$= \sum_{d_1d_2d_3=n} f(d_1)g(d_2)h(d_3).$$

The computation for the right-hand side is similar and gives the same expression. So we are done. $\hfill \Box$

Example 1.25. Here are some simple examples of Dirichlet products:

(1) Let \mathbb{I} be the function defined in Example 1.17 and f an arbitrary arithmetic function, then

$$\mathbb{I} * f = f * \mathbb{I} = f;$$

(2) Let I be the function with constant value 1 and f an arbitrary arithmetic function, then for every $n \in \mathbb{Z}^+$, we have

$$(f*I)(n) = \sum_{d \mid n} f(d);$$

(3) In particular, let f be the μ -function defined in Definition 1.20, then by Proposition 1.21 we have

$$\mu * I = I * \mu = \mathbb{I}.$$

We are ready to prove the following theorem:

Theorem 1.26 (Möbius Inversion Theorem). Let $f : \mathbb{Z}^+ \to \mathbb{C}$ be an arithmetic function. If we define the arithmetic function $F : \mathbb{Z}^+ \to \mathbb{C}$ by

$$F(n) = \sum_{d \mid n} f(d),$$

then we have

$$f(n) = \sum_{d \mid n} \mu(d) F(\frac{n}{d}).$$

Proof. We use the full power of Lemma 1.24 and Example 1.25. The definition of F shows F = f * I. Then we have

$$f = f * \mathbb{I} = f * (I * \mu) = (f * I) * \mu = F * \mu = \mu * F,$$

which is what we want by Remark 1.23.

As an immediate application of the theorem, we use it to obtain a formula for yet another important arithmetic function: the Euler ϕ -function.

Definition 1.27. The Euler ϕ -function is defined to be the following arithmetic function: for any $n \in \mathbb{Z}^+$, $\phi(n)$ is the number of integers m with $1 \leq m \leq n$ and hcf(m, n) = 1.

We first prove the following simple property of the ϕ -function.

Proposition 1.28. For any $n \in \mathbb{Z}^+$, the Euler ϕ -function satisfies the identity

$$\sum_{d\mid n} \phi(d) = n.$$

Proof. Consider the n rational numbers

$$\frac{1}{n}, \frac{2}{n}, \cdots, \frac{n-1}{n}, \frac{n}{n}.$$

Reduce each to lowest terms; i.e. perform cancellations to express each number as a quotient of relatively prime integers. The denominators will all be divisors of n. If $d \mid n$, there are exactly $\phi(d)$ of our numbers whose denominators are equal to d after reducing to lowest terms. Thus they sum up to n, as desired.

We can obtain a formula for the ϕ -function by Möbius inversion theorem.

Proposition 1.29. Let $n = p_1^{a_1} p_2^{a_2} \cdots p_l^{a_l}$ be the factorisation of $n \in \mathbb{Z}^+$ where p_1, p_2, \cdots, p_l are distinct primes, then

$$\phi(n) = n\left(1 - \frac{1}{p_1}\right)\left(1 - \frac{1}{p_2}\right)\cdots\left(1 - \frac{1}{p_l}\right).$$

Proof. By Theorem 1.26 and Proposition 1.28, we have that

$$\phi(n) = \sum_{d|n} \mu(d) \frac{n}{d}$$

$$= n - \sum_{i} \frac{n}{p_i} + \sum_{i < j} \frac{n}{p_i p_j} - \sum_{i < j < k} \frac{n}{p_i p_j p_k} + \cdots$$

$$= n \left(1 - \frac{1}{p_1} \right) \left(1 - \frac{1}{p_2} \right) \cdots \left(1 - \frac{1}{p_l} \right),$$

as desired.

Remark 1.30. Using the same factorisation of n, we can also write the formula for Euler ϕ -function in a slightly different form:

$$\phi(n) = p_1^{a_1-1} p_2^{a_2-1} \cdots p_l^{a_l-1} (p_1-1)(p_2-1) \cdots (p_l-1).$$

Indeed, we can substitute n by its prime factorisation in the previous formula and cancel all denominators with the corresponding prime factors in n to get this formula. Caution: it does not imply that each p_i is still a prime factor of $\phi(n)$ because the exponent $a_i - 1$ could be zero.