
2. Congruences

We first recall the notion of congruence, then study how to solve linear congruence equa-

tions. The Chinese remainder theorem is important in solving simultaneous equations.

2.1. Congruences and linear equations. We recall the following definition from Dis-

crete Mathematics and Programming:

Definition 2.1. If a, b,m P Z and m � 0, we say that a is congruent to b modulo m if m

divides b� a. This relation is written as

a � b pmod mq.
For any a P Z, the set a � tn P Z | n � a pmod mqu of integers congruent to a modulo

m is called a congruence class modulo m. The set of congruence classes modulo m is

denoted by Zm.

Remark 2.2. Although the notion of congruence is still well-defined for any non-zero

integer m, we are usually only interested in positive values of m, as congruences modulo

m and �m coincide.

We have seen the following structure on Zm:

Proposition 2.3. For any non-zero integer m, the set Zm has the structure of a commu-

tative ring with 1. In fact, it is the quotient ring Z{pmq where pmq is the principal ideal

of Z generated by m.

Proof. See Example (1) on Page 10 (2013) or Examples 1.20 and 1.35 (2014) in Algebra

2B. �

The cancellation law for congruences will be handy for solving congruence equations.

Proposition 2.4 (Cancellation Law). For any a, b, k,m P Z, k � 0, m � 0, assume

hcfpk,mq � d, then ka � kb pmod mq iff a � b pmod m
d
q.

Proof. See Exercise 2.3. �

Now we turn to look at congruence equations. In general a congruence equation has the

form

fpxq � 0 pmod mq,
where fpxq is a polynomial with integer coefficients and m is a non-zero integer. We are

only interested in solutions modulo m; i.e. solutions in Zm. The number of solutions is

the number of congruence classes in Zm which satisfy the given equation.
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Proposition 2.5. For any a, b,m P Z, a � 0, m � 0, assume hcfpa,mq � d, then the

congruence equation ax � b pmod mq has solutions iff d � b. In this case there are exactly

d solutions in Zm. If x0 is a solution, then the complete set of solutions is given by the

congruence classes of x0, x0 �m1, x0 � 2m1, � � � , x0 � pd� 1qm1, where m1 � m
d

.

Proof. If x0 is a solution, then ax0 � b � my0 for some integer y0. Thus ax0 �my0 � b.

Since d divides ax0 �my0, we must have d � b.
Conversely, suppose that d � b then b � cd for some c P Z. Since hcfpa,mq � d, there

exist integers x10 and y10 such that ax10 �my10 � d. Multiply both sides of the equation by

c. Then apx10cq �mpy10cq � b. Let x0 � x10c. Then ax0 � b pmod mq.
We have shown that ax � b pmod mq has a solution iff d � b.
Suppose that x0 and x1 are solutions. ax0 � b pmod mq and ax1 � b pmod mq imply that

ax1 � ax0 pmod mq. By Proposotion 2.4, it is equivalent to x1 � x0 pmod m1q, hence

x1 is a solution iff x1 � x0 � km1 for some integer k. Moreover, for each k P Z there are

integers r and s such that k � rd � s and 0 ¤ s   d. Thus x1 � x0 � sm1 � rm, or

equivalently, x1 � x0�sm1 pmod mq. These solutions are in d distinct congruence classes

modulo m. This completes the proof. �

We immediately have the following corollary:

Corollary 2.6. If hcfpa,mq � 1, then ax � b pmod mq has exactly one solution. In

particular, if p is a prime and p � a, then ax � b pmod pq has exactly one solution.

Proof. In this caes d � 1 so clearly d � b, and there is exactly d � 1 solution. �

In practice, we can solve such equations by cancellations and the Euclidean algorithm.

Example 2.7. As an example we consider the congruence 9x � 6 pmod 15q. Since

d � hcfp9, 15q � 3 divides 6, the equation has 3 solutions modulo 15. By Proposition 2.4

we can cancel 3 on both sides and reduce the equation to 3x � 2 pmod 5q. Euclidean

algorithm shows that hcfp3, 5q � 1 and 3 � 2 � 5 � p�1q � 1, thus 3 � 2 � 1 pmod 5q.
Then we multiply both sides by 2 and get x � 4 pmod 5q. Therefore the solutions to the

original equation are x � 4, 9, or 14 pmod 15q.
From 3x � 2 pmod 5q we can also try to add multiples of 5 to 2 until we can cancel

the coefficient 3. In this case we have 3x � 2 � 5 � 2 pmod 5q. By Proposition 2.4 we

still get x � 4 pmod 5q. Hence the solutions to the original equation are x � 4, 9, or 14

pmod 15q.
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Proposition 2.5 can also be used to solve linear Diophantine equations of the form ax�by �
c, where a, b, c P Z. We explain it by the following example.

Example 2.8. We want to find all integer solutions to the equation 9x � 15y � 6. We

solve it by considering the congruence equation 9x � 6 pmod 15q. The computation above

has showed that the solution is given by x � 4 pmod 5q, i.e. x � 5k � 4 for any k P Z.

By substitution we have 9p5k � 4q � 15y � 6, so y � �3k � 2. Therefore all solutions are

given by x � 5k � 4, y � �3k � 2 where k is an arbitrary integer.

Now we apply Proposition 2.5 to study the group of units in the ring Zm.

Proposition 2.9. Let m be a positive integer. An element a P Zm is a unit iff hcfpa,mq �
1. There are exactly φpmq units in Zm. Zm is a field iff m is a prime.

Proof. a P Zm is a unit iff ax � 1 pmod mq is solvable. By Proposition 2.5, this is

equivalent to hcfpa,mq � 1, hence equivalent to a and m being coprime.

The number of units is precisely the number of such a’s with 1 ¤ a ¤ m and hcfpa,mq � 1.

By Definition 1.27, there are precisely φpmq units in Zm.

If p is a prime and a � 0 in Zp, then hcfpa, pq � 1. Thus every non-zero element of Zp is

a unit, which shows that Zp is a field.

If m is not a prime, then we can write m � m1m2, where 1   m1,m2   m. Thus m1 � 0

and m2 � 0, but m1 �m2 � m � 0. Therefore Zm is not a field. �

We immediately obtain the following corollaries, both of which have their own names:

Corollary 2.10 (Euler’s Theorem). If hcfpa,mq � 1, then we have aφpmq � 1 pmod mq.

Proof. The units in Zm form a group of order φpmq. If a and m are coprime, a is a unit.

Thus aφpmq � 1, or equivalently, aφpmq � 1 pmod mq. �

Corollary 2.11 (Fermat’s Little Theorem). If p is a prime and p � a, then we have

ap�1 � 1 pmod pq.

Proof. If p � a, then a are p are relatively prime. Thus aφppq � 1 pmod pq. The result

follows, since for a prime p, we have φppq � p� 1. �
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