2. CONGRUENCES

We first recall the notion of congruence, then study how to solve linear congruence equa-
tions. The Chinese remainder theorem is important in solving simultaneous equations.

2.1. Congruences and linear equations. We recall the following definition from Dis-
crete Mathematics and Programming:

Definition 2.1. If a,b,m € Z and m # 0, we say that a is congruent to b modulo m if m
divides b — a. This relation is written as

a=b (modm).

For any a € Z, the set @ = {n € Z | n = a (mod m)} of integers congruent to a modulo
m is called a congruence class modulo m. The set of congruence classes modulo m is
denoted by Z,,.

Remark 2.2. Although the notion of congruence is still well-defined for any non-zero
integer m, we are usually only interested in positive values of m, as congruences modulo
m and —m coincide.

We have seen the following structure on Z,,:

Proposition 2.3. For any non-zero integer m, the set Z,, has the structure of a commu-
tative ring with 1. In fact, it is the quotient ring Z/(m) where (m) is the principal ideal
of Z generated by m.

Proof. See Example (1) on Page 10 (2013) or Examples 1.20 and 1.35 (2014) in Algebra
2B. U

The cancellation law for congruences will be handy for solving congruence equations.

Proposition 2.4 (Cancellation Law). For any a,b,k,m € Z, k # 0, m # 0, assume
hef(k,m) = d, then ka = kb (mod m) iff a =b (mod %).

Proof. See Exercise 2.3. U

Now we turn to look at congruence equations. In general a congruence equation has the
form

f(#) =0 (mod m),
where f(x) is a polynomial with integer coefficients and m is a non-zero integer. We are
only interested in solutions modulo m; i.e. solutions in Z,,. The number of solutions is

the number of congruence classes in Z,, which satisfy the given equation.
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Proposition 2.5. For any a,b,m € Z, a # 0, m # 0, assume hcf(a,m) = d, then the
congruence equation ax = b (mod m) has solutions iff d | b. In this case there are exactly
d solutions in Z,,. If x¢ is a solution, then the complete set of solutions is given by the

congruence classes of xg, xo +m', 2o +2m',--- 1o + (d — 1)m’, where m’ = 2.

Proof. If xg is a solution, then axg — b = myy for some integer y. Thus axy — myy = b.
Since d divides axg — myg, we must have d | b.

Conversely, suppose that d | b then b = cd for some ¢ € Z. Since hcf(a, m) = d, there
exist integers xf, and y(, such that ax{ — my) = d. Multiply both sides of the equation by
c¢. Then a(xye) —m(ype) = b. Let xy = xpe. Then axg =b (mod m).

We have shown that ax = b (mod m) has a solution iff d | b.

Suppose that zy and z; are solutions. axg = b (mod m) and ax; = b (mod m) imply that
ar; = axry (mod m). By Proposotion 2.4, it is equivalent to z; = zy (mod m’), hence
21 is a solution iff z1 = xg + km’ for some integer k. Moreover, for each k € Z there are
integers r and s such that k = rd + s and 0 < s < d. Thus x; = xg + sm' + rm, or
equivalently, 1 = z9+ sm’ (mod m). These solutions are in d distinct congruence classes
modulo m. This completes the proof. 0

We immediately have the following corollary:

Corollary 2.6. If hef(a,m) = 1, then ax = b (mod m) has exactly one solution. In
particular, if p is a prime and p } a, then axr = b (mod p) has ezxactly one solution.

Proof. In this caes d = 1 so clearly d | b, and there is exactly d = 1 solution. 0

In practice, we can solve such equations by cancellations and the Euclidean algorithm.

Example 2.7. As an example we consider the congruence 9z = 6 (mod 15). Since
d = hef(9,15) = 3 divides 6, the equation has 3 solutions modulo 15. By Proposition 2.4
we can cancel 3 on both sides and reduce the equation to 3z = 2 (mod 5). Euclidean
algorithm shows that hef(3,5) = 1 and 3 x 24+ 5 x (—1) = 1, thus 3 x 2 =1 (mod 5).
Then we multiply both sides by 2 and get =4 (mod 5). Therefore the solutions to the
original equation are z = 4,9, or 14 (mod 15).

From 3z = 2 (mod 5) we can also try to add multiples of 5 to 2 until we can cancel
the coefficient 3. In this case we have 3x = 2 + 5 x 2 (mod 5). By Proposition 2.4 we
still get z =4 (mod 5). Hence the solutions to the original equation are x = 4,9, or 14

(mod 15).
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Proposition 2.5 can also be used to solve linear Diophantine equations of the form ax+by =
¢, where a, b, c € Z. We explain it by the following example.

Example 2.8. We want to find all integer solutions to the equation 9z + 15y = 6. We
solve it by considering the congruence equation 9 = 6 (mod 15). The computation above
has showed that the solution is given by z = 4 (mod 5), i.e. © = 5k + 4 for any k € Z.
By substitution we have 9(5k 4+ 4) + 15y = 6, so y = —3k — 2. Therefore all solutions are
given by z = 5k + 4,y = —3k — 2 where k is an arbitrary integer.

Now we apply Proposition 2.5 to study the group of units in the ring Z,,.

Proposition 2.9. Let m be a positive integer. An element @ € Zi, is a unit iff hef(a, m) =
1. There are exactly ¢(m) units in Zp,. Ly, is a field iff m is a prime.

Proof. @ € Z,, is a unit iff ax = 1 (mod m) is solvable. By Proposition 2.5, this is
equivalent to hef(a, m) | 1, hence equivalent to a and m being coprime.

The number of units is precisely the number of such a’s with 1 < a < m and hef(a, m) = 1.
By Definition 1.27, there are precisely ¢(m) units in Z,,.

If p is a prime and @ # 0 in Z,, then hcf(a, p) = 1. Thus every non-zero element of Z, is
a unit, which shows that Z, is a field.

If m is not a prime, then we can write m = m;ms, where 1 < my,ms < m. Thus m7 # 0
and ms # 0, but my - my = m = 0. Therefore Z,, is not a field. O

We immediately obtain the following corollaries, both of which have their own names:

Corollary 2.10 (Euler’s Theorem). If hef(a,m) = 1, then we have a®™ =1 (mod m).

Proof. The units in Z,, form a group of order ¢(m). If a and m are coprime, @ is a unit.
Thus a®™ = 1, or equivalently, a®™ =1 (mod m). O

Corollary 2.11 (Fermat’s Little Theorem). If p is a prime and p } a, then we have
a? ' =1 (mod p).

Proof. If p t a, then a are p are relatively prime. Thus a®® = 1 (mod p). The result
follows, since for a prime p, we have ¢(p) = p — 1. O
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