
2.2. Chinese remainder theorem. Sometimes we need to solve a system of congruence

equations. The main result for this type of problems is the Chinese remainder theorem.

We will continue to work in Z but this theorem is valid in more general situations; see

Proposition 2.17 (2013) or Theorem 2.24 (2014) in Algebra 2B for two other versions.

Theorem 2.12. Suppose that m1,m2, � � � ,mk are pairwise coprime (i.e. hcfpmi,mjq � 1

for i � j) non-zero integers and m � m1m2 � � �mk. Then the system of congruence

equations

x � b1 pmod m1q,
x � b2 pmod m2q,

� � � ,
x � bk pmod mkq.

has a solution, which is unique modulo m.

Proof. We prove it by induction on k. For k � 1 there is nothing to prove.

For k � 2, an integer solution to x � b1 pmod m1q is of the form x � m1q�b1. So we need

to have m1q � b1 � b2 pmod m2q, or m1q � b2 � b1 pmod m2q. Since hcfpm1,m2q � 1,

by Proposition 2.5, it has a unique solution for q, say q � q0 pmod m2q. Or equivalently,

q � m2r � q0 for any r P Z. Hence x � m1m2r � pm1q0 � b1q for any r P Z, which is the

unique solution for x modulo m � m1m2.

For general k, suppose we have proved the result for k � 1. That is, the first k � 1

congruence equations have a unique common solution x � s pmod m1q for some s, where

m1 � m1m2 � � �mk�1. Then the problem reduces to a system of two congruences

x � s pmod m1q,
x � bk pmod mkq.

By the case for k � 2 above, there is a unique solution for x modulo m � m1mk. This

finishes the induction. �

To use the theorem to make explicit computations, we just need to follow the proof. We

illustrate the idea using the following example.

Example 2.13. Consider the system

x � 31 pmod 41q,
x � 59 pmod 26q.

From the first equation we can write x � 41q � 31. We plug it into the second equation

and get 41q � 31 � 59 pmod 26q. By removing multiples of 26 we reduce it to 15q � 2
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pmod 26q. By Euclidean algorithm, we have hcfp15, 26q � 1 and 15 � 7 � 26 � 4 � 1,

which implies q � 14 pmod 26q is the unique solution for q. If we write q � 26r�14, then

x � 41� 26r � p14� 41� 31q, i.e. x � 605 pmod 1066q.
Remark 2.14. We explain what to do in slightly more complicated situations.

(1) If there are more than two equations in the system, we need to find the common

solution to the first two equations, then combine the result with the third equation

to find a solution to all three equations, etc. This procedure is reflected by the

inductive step in the proof.

(2) If the equations in the system are not in the form of x � bi pmod miq, we need to

solve (at least) one equation before using substitution. See Example 2.15.

(3) In case the mi’s are not pairwise coprime, Theorem 2.12 does not apply any more.

Therefore the existence and uniqueness of solutions may not hold. However the

substitution method can still be used to solve the system. See Example 2.15.

Example 2.15. Consider the system

5x � 7 pmod 12q,
7x � 1 pmod 10q.

Notice that the coefficients in front of x are not 1. Moreover 12 and 10 are not coprime.

We can nevertheless solve it. Using the method in Example 2.7 we find the solution to

the first equation x � 11 pmod 12q. Then we write x � 12q � 11 and substitute x in

the second equation. We get 7p12q � 11q � 1 pmod 10q, or 84q � �76 pmod 10q. Using

the method in Example 2.7 again, we remove multiples of 10 on both sides and cancel

the common factor 2 to reduce the equation to 2q � 2 pmod 5q, whose solution is q � 1

pmod 5q. Write q � 5r � 1 to get x � 12p5r � 1q � 11 � 60r � 23. Hence the solution to

the original system is x � 23 pmod 60q.

We wish to interpret the Chinese remainder theorem in the language of rings. We need

to recall the definition for the direct product of rings; see Definition on Page 27 (2013) or

Definition 2.22 (2014) in Algebra 2B.

Definition 2.16. Let R1, R2, � � � , Rn be commutative rings with 1. The direct product is

the ring

R1 �R2 � � � � �Rn �
 pa1, a2, � � � , anq | ai P Ri for each i

(
,

in which addition and multiplication are given component-wise by

pa1, a2, � � � , anq � pb1, b2, � � � , bnq � pa1 � b1, a2 � b2, � � � , an � bnq,
pa1, a2, � � � , anq � pb1, b2, � � � , bnq � pa1b1, a2b2, � � � , anbnq.

Remark 2.17. We make the following observations.
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(1) All the algebraic laws hold inR1�R2�� � ��Rn since they hold for every component.

Clearly the element p0R1 , 0R2 , � � � , 0Rnq is the zero element, and the additive inverse

of pa1, a2, � � � , anq is p�a1,�a2, � � � ,�anq. The element p1R1 , 1R2 , � � � , 1Rnq is the

multiplicative identity. Thus R1 �R2 � � � � �Rn is a commutative ring with 1.

(2) Notice that pa1, a2, � � � , anq is a unit in R1�R2� � � � �Rn iff ai is a unit in Ri for

each i. We usually denote the group of units of a ring R by R�, therefore we have

pR1 �R2 � � � � �Rnq� � R�
1 �R�

2 � � � � �R�
n.

See Remark on Page 27 (2013) or Remark 2.23 (2014) in Algebra 2B.

Now we restate the Chinese remainder theorem as follows:

Corollary 2.18. Suppose that m1,m2, � � � ,mk are pairwise coprime non-zero integers

and m � m1m2 � � �mk. Then there is a ring isomorphism

Zm � Zm1 � Zm2 � � � � � Zmk
.

Proof. For each i there is a natural ring homomorphism ψi : Z Ñ Zmi
which maps

every integer n to the congruence class modulo mi containing n. We construct a map

ψ : Z Ñ Zm1 � Zm2 � � � � � Zmk
by ψpnq � pψ1pnq, ψ2pnq, � � � , ψpnqq. We can see ψ

respects additions and multiplications, because each component ψi does. Therefore ψ is

a ring homomorphism.

We apply Theorem 2.12. The existence of solutions shows that ψ is surjective; in other

words, imψ � Zm1 � Zm2 � � � � � Zmk
. The uniqueness of solutions modulo m shows

that kerψ � pmq. By the fundamental isomorphism theorem of rings (Theorem 1.8

(2013) or Theorem 2.13 (2014) in Algebra 2B), ψ induces a ring isomorphism Z{pmq �
Zm1 � Zm2 � � � � � Zmk

. By Proposition 2.3, the left-hand side is precisely Zm. �

We have the following immediate consequence concerning the groups of units.

Corollary 2.19. Suppose that m1,m2, � � � ,mk are pairwise coprime non-zero integers

and m � m1m2 � � �mk. Then there is a group isomorphism

Z�
m � Z�

m1
� Z�

m2
� � � � � Z�

mk
.

Proof. We apply Remark 2.17 and Corollary 2.18 and obtain

Z�
m � pZm1 � Zm2 � � � � � Zmk

q� � Z�
m1
� Z�

m2
� � � � � Z�

mk

as desired. �
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Remark 2.20. This result is very helpful in studying the group of units in Z�
m for an

arbitrary positive integer m. More precisely, let m � 2apa11 p
a2
2 � � � pall be the prime decom-

position of m, where p1, p2, � � � pl are distinct odd primes. Since 2a, pa11 , p
a2
2 , � � � , pall are

pairwise coprime, we get

Z�
m � Z�

2a � Z�
p
a1
1
� Z�

p
a2
2
� � � � � Z�

p
al
l
.

Therefore, to understand the group structure of Z�
m for an arbitrary m, it suffices to

understand it for m being powers of primes. This is what we are going to study next.
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