
3. Primitive Roots

We study the group structure of Z�
m for any integer m ¥ 2. In particular, we wish to

know when it is a cyclic group. This leads to the notion of the primitive root.

3.1. The cases of primes and powers of 2. We start with the definition of primitive

roots.

Definition 3.1. Let a,m P Z, m ¥ 2, hcfpa,mq � 1. a is said to be a primitive root

modulo m if the group of units Z�
m is cyclic and the congruence class a is a generator.

Remark 3.2. We make some comments about this definition.

(1) Assume a and m and coprime. The order of a modulo m is defined to be the

order of a in the group of units Z�
m. For any integer n, an � 1 pmod mq iff n is

a multiple of the order of a modulo m. In this terminology, a is a primitive root

modulo m iff a is coprime to m and the order of a modulo m is φpmq.
(2) Knowing that a is a primitive root modulo m allows us to write

Z�
m � t a k | k P Z, 0 ¤ k   φpmq u.

In other words, every integer coprime to m is congruent to ak for some k P Z. This

will be extremely helpful in many different situations. See Exercises 3.2 and 3.3.

(3) If a is a primitive root modulo m, then Z�
m is cyclic of order φpmq hence has

φpφpmqq generators. More precisely, any primitive root modulo m lies in the

congruence class a k for some k with 0 ¤ k   φpmq and hcfpk, φpmqq � 1.

We have seen in Remark 2.20 that it is essential to understand Z�
m when m is a power of

a prime in order to understand the general case. We first consider the situation when m

is a prime. We need the following lemma:

Lemma 3.3. Let fpxq P krxs where k is a field. Suppose that deg fpxq � n. Then f has

at most n distinct roots in k.

Proof. The proof goes by induction on n. For n � 0 the assertion is trivial. Assume that

the statement is true for polynomials of degree n � 1. If fpxq has no roots in k, we are

done. If α is a root, since krxs is a Euclidean domain, we can write fpxq � px�αqqpxq�r,
where r is a constant. Setting x � α we see that r � 0. Thus fpxq � px � αqqpxq and

deg qpxq � n � 1. If β � α is another root of fpxq, then 0 � fpβq � pβ � αqqpβq, which

implies that qpβq � 0. Since by induction qpxq has at most n� 1 distinct roots, fpxq has

at most n distinct roots. �

The following theorem is useful in many situations.
30



Theorem 3.4. Let K be a field and K� the group of non-zero elements under multipli-

cation. Suppose G is a finite subgroup of K�, then G is cyclic.

Proof. We prove by strong induction on n � |G|. If n � 1 there is nothing to prove. Now

we assume any subgroup of K� with order smaller than n is cyclic.

For any d with d � n and d   n, we write Gd � tg P G | gd � 1u. We claim Gd is a

subgroup of G. Indeed, 1 P Gd because 1d � 1. If g1, g2 P Gd, then pg1g2qd � gd1g
d
2 �

1 because multiplication is commutative in the field K. Therefore Gd is closed under

multiplication. Moreover, if g P Gd, then pg�1qd � pgdq�1 � 1, hence Gd is closed under

taking inverse. These conclude that Gd is a group, thus a subgroup of G. Each element of

Gd is a solution to xd � 1 � 0 in K, so |Gd| ¤ d by Lemma 3.3. By induction hypothesis

we know Gd is a cyclic group.

Let ψpdq be the number of elements of order d in G. Each such element is contained in

Gd, so ψpdq is also the number of elements of order d in Gd. If |Gd|   d then ψpdq � 0.

Otherwise Gd is a cyclic group of order d and ψpdq � φpdq. So we always have ψpdq ¤ φpdq.
On one hand ψpnq �°

d�n,d n ψpdq � n since the order of any element of G is a divisor of

n. On the other hand φpnq�°
d�n,d n φpdq � n by Proposition 1.28. Since for each d   n

we have ψpdq ¤ φpdq, we must have ψpnq ¥ φpnq ¡ 0. In other words, there are elements

of order n in G, hence G is cyclic. �

The following immediate consequence has fundamental importance. It was first proved

by Gauss.

Corollary 3.5. Let p be a prime, then Z�
p is a cyclic group; i.e. there exist primitive

roots modulo p.

Proof. By Proposition 2.9, Zp is a field. Then the result follows from Theorem 3.4. �

Next we study the case of prime powers. We will show that primitive roots exist for powers

of odd primes, but the situation is completely different for powers of 2. The necessity of

treating 2 differently from the other primes occurs repeatedly in number theory.

Proposition 3.6. Let l be a positive integer. Then Z�
2l

is not cyclic unless l � 1 or 2.

Proof. It is easy to see that 1 is a primitive root modulo 2, and 3 is a primitive root

modulo 4. From now on we assume that l ¥ 3. We claim that

a2l�2 � 1 pmod 2lq
for every odd integer a. It means that the order of every element in Z�

2l
is strictly smaller

than φp2lq, hence Z�
2l

cannot be cyclic.
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We prove this claim by induction on l. When l � 3, Z�
8 � t1, 3, 5, 7u. We can check them

one by one and conclude a2 � 1 pmod 8q for any odd integer a. Now we assume the claim

holds for l, then we can write a2l�2 � 1� b � 2l, thus

a2l�1 � p1� b � 2lq2 � 1� b � 2l�1 � b2 � 22l.

The last two terms are divisible by 2l�1, hence a2l�1 � 1 pmod 2l�1q, i.e. the claim holds

for l � 1. �

Remark 3.7. For enthusiasts: for any l ¥ 3, we actually have Z�
2l
� Z2 � Z2l�2 which is

the direct product of two cyclic groups. We do not prove this fact but it is not difficult.
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