3.2. The case of odd prime powers and the general case. We first show that primitive roots always exist for powers of odd primes. After that we wrap up and give a list of all values of $m \geqslant 2$ which possess primitive roots.

Proposition 3.8. Let p be an odd prime and $l \geqslant 2$ an integer. Then $\mathbb{Z}_{p^{l}}^{*}$ is cyclic; i.e. there exist primitive roots modulo p^{l}.

Proof. We prove the result in three steps. We first produce a candidate, then prove that it is indeed a primitive root modulo p^{l}.

Step 1. By Corollary 3.5, we assume g is a primitive root modulo p. Then we have $g^{p-1} \equiv 1(\bmod p)$. We claim that we can choose g such that $g^{p-1} \not \equiv 1\left(\bmod p^{2}\right)$.

In fact, if g satisfies $g^{p-1} \equiv 1\left(\bmod p^{2}\right)$, we can consider $g+p$, which is still a primitive root modulo p. However we have

$$
\begin{aligned}
(g+p)^{p-1} & \equiv g^{p-1}+(p-1) g^{p-2} p \quad\left(\bmod p^{2}\right) \\
& \equiv 1+(p-1) g^{p-2} p \quad\left(\bmod p^{2}\right) \\
& \not \equiv 1 \quad\left(\bmod p^{2}\right),
\end{aligned}
$$

which shows that we can replace g by $g+p$ and achieve our claim.
Step 2. By Step 1 we can write $g^{p-1} \equiv 1+a p\left(\bmod p^{2}\right)$ for some $a \in \mathbb{Z}$ not divisible by p. We claim that for each $l \geqslant 2$, we similarly have

$$
\begin{equation*}
g^{\phi\left(p^{l-1}\right)} \equiv 1+a \cdot p^{l-1} \quad\left(\bmod p^{l}\right) . \tag{3.1}
\end{equation*}
$$

We prove it by induction on l. When $l=2$, the claim follows from Step 1. Assume the claim is true for some $l \geqslant 2$, then we can write

$$
g^{\phi\left(p^{l-1}\right)}=1+b \cdot p^{l-1}
$$

for some $b \in \mathbb{Z}$ with $a \equiv b(\bmod p)$. Then

$$
g^{\phi\left(p^{l}\right)}=\left(1+b \cdot p^{l-1}\right)^{p}=1+b \cdot p^{l}+\sum_{i=2}^{p-1}\binom{p}{i} b^{i} \cdot p^{i(l-1)}+b^{p} \cdot p^{p(l-1)} .
$$

We know $\binom{p}{i}$ is divisible p. (Indeed, we have $p!=i!(p-i)!\binom{p}{i}$ by the definition of binomial coefficients. The left-hand side is divisible by p, hence so is the right-hand side. But p does not divide $i!(p-i)!$ since it is a product of integers less than, and thus coprime to p. Hence p divides $\binom{p}{i}$.) Therefore for each $i \geqslant 2$, the corresponding term in the summation is divisible by $p^{1+i(l-1)}$, where $1+i(l-1) \geqslant 1+2(l-1) \geqslant l+1$. The term after the summation is divisible by $p^{p(l-1)}$, where $p(l-1) \geqslant 3(l-1) \geqslant l+1$ since p is an odd prime. Also notice that the difference of a and b is a multiple of p. All this together implies

$$
\begin{equation*}
g^{\phi\left(p^{l}\right)} \equiv 1+a \cdot p_{33}^{l} \quad\left(\bmod p^{l+1}\right) . \tag{3.2}
\end{equation*}
$$

Therefore the claim is true for $l+1$.
Step 3. We show that for each $l \geqslant 2$, the order of g modulo p^{l} is $\phi\left(p^{l}\right)$; i.e. g is a primitive root modulo p^{l}.

Denote the order of g modulo p^{l} by d. First of all, $g^{d} \equiv 1\left(\bmod p^{l}\right)$ implies $g^{d} \equiv 1$ $(\bmod p)$. Since we chose g to be a primitive root modulo p in Step 1, we know that $\phi(p)$ divides d. Then by (3.2) we have $g^{\phi\left(p^{l}\right)} \equiv 1\left(\bmod p^{l}\right)$, hence d divides $\phi\left(p^{l}\right)$. Finally by (3.1) we have $g^{\phi\left(p^{l-1}\right)} \not \equiv 1\left(\bmod p^{l}\right)$, hence d does not divide $\phi\left(p^{l-1}\right)$. These requirements leave $d=\phi\left(p^{l}\right)$ as the only possibility.

Remark 3.9. Notice that Steps 2 and 3 in the proof actually shows that: if g is a primitive root modulo p and $g^{p-1} \not \equiv 1\left(\bmod p^{2}\right)$, then g is a primitive root modulo p^{l} for any integer $l \geqslant 2$. This sufficient condition will be handy in looking for primitive roots modulo higher powers of odd primes; see Exercise 3.1 for an example. In fact, this condition is also necessary; see Exercise 3.4.

Finally we put all our existing results together and get:
Theorem 3.10. An integer $m \geqslant 2$ possesses primitive roots iff m is of the form $2,4, p^{k}$ or $2 p^{k}$, where p is an odd prime and k is a positive integer.

Proof. This proof is not covered in lecture and is non-examinable.
We first show that m possesses primitive roots if it has one of the given forms. We already know this for 2,4 and p^{k}. In the last case, by Remark 2.20 we have

$$
\mathbb{Z}_{2 p^{k}}^{*} \cong \mathbb{Z}_{2}^{*} \times \mathbb{Z}_{p^{k}}^{*} \cong \mathbb{Z}_{p^{k}}^{*},
$$

it follows that $\mathbb{Z}_{2 p^{k}}^{*}$ is cyclic; i.e. $2 p^{k}$ possesses primitive roots.
We then show that n does not possess primitive roots in all other cases. We already know this for $m=2^{l}$ with $l \geqslant 3$, so we can now assume m is not a power of 2 .

We claim that m can be written as a product $m_{1} m_{2}$, where m_{1} and m_{2} are coprime, $m_{1}>2$ and $m_{2}>2$. Indeed, assume $m=2^{a} p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{l}^{a_{l}}$ is the prime factorisation of m, where $p_{1}, p_{2}, \cdots, p_{l}$ are distinct odd primes, $a \geqslant 0$ and $a_{i} \geqslant 1$ for each i. If $l \geqslant 2$, then we can take $m_{1}=p_{1}^{a_{1}}$ and $m_{2}=2^{a} p_{2}^{a_{2}} \cdots p_{l}^{a_{l}}$. Otherwise $l=1$, hence by assumption $a \geqslant 2$, then we can take $m_{1}=2^{a}$ and $m_{2}=p_{1}^{a_{1}}$.

We then have that $\phi\left(m_{1}\right)$ and $\phi\left(m_{2}\right)$ are both even by Exercise 1.2 and that $\mathbb{Z}_{m}^{*} \cong$ $\mathbb{Z}_{m_{1}}^{*} \times \mathbb{Z}_{m_{2}}^{*}$ by Remark 2.20. Since every group of even order has an element of order 2 , both factors have elements of order 2, which implies that \mathbb{Z}_{m}^{*} has at least two elements of order 2. Therefore it is not cyclic since a cyclic group contains at most one element of order 2 . Thus m does not possess primitive roots.

