3.2. The case of odd prime powers and the general case. We first show that
primitive roots always exist for powers of odd primes. After that we wrap up and give a
list of all values of m > 2 which possess primitive roots.

Proposition 3.8. Let p be an odd prime and | = 2 an integer. Then Z;l 15 cyclic; 1.e.
there exist primitive roots modulo p'.

Proof. We prove the result in three steps. We first produce a candidate, then prove that
it is indeed a primitive root modulo p'.

Step 1. By Corollary 3.5, we assume ¢ is a primitive root modulo p. Then we have
g""' =1 (mod p). We claim that we can choose g such that g°~! #£ 1 (mod p?).

In fact, if g satisfies g? ' =1 (mod p?), we can consider g + p, which is still a primitive
root modulo p. However we have
(g+p)P'=¢g""+(—1)g""p (mod p?)
=1+(p—1)g" % (mod p?)
£1 (mod p?),
which shows that we can replace g by g + p and achieve our claim.

Step 2. By Step 1 we can write g? ! = 1 + ap (mod p?) for some a € Z not divisible by
p. We claim that for each [ > 2, we similarly have

PP =14a-p" (mod p). (3.1)

We prove it by induction on [. When [ = 2, the claim follows from Step 1. Assume the
claim is true for some [ > 2, then we can write

P =1 b pt

for some b € Z with a = b (mod p). Then
p—1
i=2

We know (f) is divisible p. (Indeed, we have p! = il(p—1)! (f) by the definition of binomial
coefficients. The left-hand side is divisible by p, hence so is the right-hand side. But p
does not divide i!(p — i)! since it is a product of integers less than, and thus coprime to p.
Hence p divides (f)) Therefore for each ¢ > 2, the corresponding term in the summation
is divisible by p'*~Y where 1 +i(l —1) = 1 +2(l — 1) = [ + 1. The term after the
summation is divisible by p?~Y, where p(l —1) = 3(I—1) > [ + 1 since p is an odd prime.
Also notice that the difference of a and b is a multiple of p. All this together implies

¢#?P=14a-p (mod p*). (3.2)
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Therefore the claim is true for [ + 1.

Step 3. We show that for each [ > 2, the order of g modulo p' is ¢(p'); i.e. g is a primitive
root modulo p'.

Denote the order of g modulo p' by d. First of all, g = 1 (mod p') implies g¢ = 1
(mod p). Since we chose g to be a primitive root modulo p in Step 1, we know that ¢(p)
divides d. Then by (3.2) we have ¢g?®) =1 (mod p'), hence d divides ¢(p'). Finally by
(3.1) we have ¢°@™") 21 (mod p'), hence d does not divide ¢(p' ). These requirements
leave d = ¢(p') as the only possibility. O

Remark 3.9. Notice that Steps 2 and 3 in the proof actually shows that: if ¢ is a primitive
root modulo p and g? ' # 1 (mod p?), then g is a primitive root modulo p' for any integer
[ = 2. This sufficient condition will be handy in looking for primitive roots modulo higher
powers of odd primes; see Exercise 3.1 for an example. In fact, this condition is also
necessary; see Exercise 3.4.

Finally we put all our existing results together and get:

Theorem 3.10. An integer m = 2 possesses primitive roots iff m is of the form 2, 4, p*
or 2p*, where p is an odd prime and k is a positive integer.

Proof. This proof is not covered in lecture and is non-examinable.

We first show that m possesses primitive roots if it has one of the given forms. We already
know this for 2, 4 and p*. In the last case, by Remark 2.20 we have

Z;pk = Z; X sz = Z;k,
it follows that Z;‘pk is cyclic; i.e. 2p* possesses primitive roots.

We then show that n does not possess primitive roots in all other cases. We already know
this for m = 2! with [ > 3, so we can now assume m is not a power of 2.

We claim that m can be written as a product miymso, where m; and msy are coprime,

my > 2 and my > 2. Indeed, assume m = 2%p{'p5? - - - p;"

is the prime factorisation of m,
where py, pa, - - -, p; are distinct odd primes, a = 0 and a; > 1 for each ¢. If [ = 2, then we
can take m; = pi* and my = 29p5* - - - p/*. Otherwise [ = 1, hence by assumption a > 2,

then we can take m; = 2% and my = p}*.

We then have that ¢(m;) and ¢(msy) are both even by Exercise 1.2 and that Z} =
7y, x 7y, by Remark 2.20. Since every group of even order has an element of order 2,
both factors have elements of order 2, which implies that Z7 has at least two elements
of order 2. Therefore it is not cyclic since a cyclic group contains at most one element of

order 2. Thus m does not possess primitive roots. O
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