
3.2. The case of odd prime powers and the general case. We first show that

primitive roots always exist for powers of odd primes. After that we wrap up and give a

list of all values of m ¥ 2 which possess primitive roots.

Proposition 3.8. Let p be an odd prime and l ¥ 2 an integer. Then Z�
pl

is cyclic; i.e.

there exist primitive roots modulo pl.

Proof. We prove the result in three steps. We first produce a candidate, then prove that

it is indeed a primitive root modulo pl.

Step 1. By Corollary 3.5, we assume g is a primitive root modulo p. Then we have

gp�1 � 1 pmod pq. We claim that we can choose g such that gp�1 � 1 pmod p2q.
In fact, if g satisfies gp�1 � 1 pmod p2q, we can consider g � p, which is still a primitive

root modulo p. However we have

pg � pqp�1 � gp�1 � pp� 1qgp�2p pmod p2q
� 1� pp� 1qgp�2p pmod p2q
� 1 pmod p2q,

which shows that we can replace g by g � p and achieve our claim.

Step 2. By Step 1 we can write gp�1 � 1 � ap pmod p2q for some a P Z not divisible by

p. We claim that for each l ¥ 2, we similarly have

gφpp
l�1q � 1� a � pl�1 pmod plq. (3.1)

We prove it by induction on l. When l � 2, the claim follows from Step 1. Assume the

claim is true for some l ¥ 2, then we can write

gφpp
l�1q � 1� b � pl�1

for some b P Z with a � b pmod pq. Then

gφpp
lq � p1� b � pl�1qp � 1� b � pl �

p�1̧

i�2

�
p

i



bi � pipl�1q � bp � pppl�1q.

We know
�
p
i

�
is divisible p. (Indeed, we have p! � i!pp� iq!�p

i

�
by the definition of binomial

coefficients. The left-hand side is divisible by p, hence so is the right-hand side. But p

does not divide i!pp� iq! since it is a product of integers less than, and thus coprime to p.

Hence p divides
�
p
i

�
.) Therefore for each i ¥ 2, the corresponding term in the summation

is divisible by p1�ipl�1q, where 1 � ipl � 1q ¥ 1 � 2pl � 1q ¥ l � 1. The term after the

summation is divisible by pppl�1q, where ppl�1q ¥ 3pl�1q ¥ l�1 since p is an odd prime.

Also notice that the difference of a and b is a multiple of p. All this together implies

gφpp
lq � 1� a � pl pmod pl�1q. (3.2)
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Therefore the claim is true for l � 1.

Step 3. We show that for each l ¥ 2, the order of g modulo pl is φpplq; i.e. g is a primitive

root modulo pl.

Denote the order of g modulo pl by d. First of all, gd � 1 pmod plq implies gd � 1

pmod pq. Since we chose g to be a primitive root modulo p in Step 1, we know that φppq
divides d. Then by (3.2) we have gφpp

lq � 1 pmod plq, hence d divides φpplq. Finally by

(3.1) we have gφpp
l�1q � 1 pmod plq, hence d does not divide φppl�1q. These requirements

leave d � φpplq as the only possibility. �

Remark 3.9. Notice that Steps 2 and 3 in the proof actually shows that: if g is a primitive

root modulo p and gp�1 � 1 pmod p2q, then g is a primitive root modulo pl for any integer

l ¥ 2. This sufficient condition will be handy in looking for primitive roots modulo higher

powers of odd primes; see Exercise 3.1 for an example. In fact, this condition is also

necessary; see Exercise 3.4.

Finally we put all our existing results together and get:

Theorem 3.10. An integer m ¥ 2 possesses primitive roots iff m is of the form 2, 4, pk

or 2pk, where p is an odd prime and k is a positive integer.

Proof. This proof is not covered in lecture and is non-examinable.

We first show that m possesses primitive roots if it has one of the given forms. We already

know this for 2, 4 and pk. In the last case, by Remark 2.20 we have

Z�
2pk � Z�

2 � Z�
pk � Z�

pk ,

it follows that Z�
2pk

is cyclic; i.e. 2pk possesses primitive roots.

We then show that n does not possess primitive roots in all other cases. We already know

this for m � 2l with l ¥ 3, so we can now assume m is not a power of 2.

We claim that m can be written as a product m1m2, where m1 and m2 are coprime,

m1 ¡ 2 and m2 ¡ 2. Indeed, assume m � 2apa11 p
a2
2 � � � pall is the prime factorisation of m,

where p1, p2, � � � , pl are distinct odd primes, a ¥ 0 and ai ¥ 1 for each i. If l ¥ 2, then we

can take m1 � pa11 and m2 � 2apa22 � � � pall . Otherwise l � 1, hence by assumption a ¥ 2,

then we can take m1 � 2a and m2 � pa11 .

We then have that φpm1q and φpm2q are both even by Exercise 1.2 and that Z�
m �

Z�
m1

� Z�
m2

by Remark 2.20. Since every group of even order has an element of order 2,

both factors have elements of order 2, which implies that Z�
m has at least two elements

of order 2. Therefore it is not cyclic since a cyclic group contains at most one element of

order 2. Thus m does not possess primitive roots. �
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