
5. Quadratic Reciprocity

We introduce yet another way of computing Legendre symbol due to Gauss and give a

proof of the law of quadratic reciprocity.

5.1. Gauss’ lemma. For any odd prime p and any integer a not divisible by p, Euler’s

criterion Proposition 4.4 (1) gives a characterisation of the Legendre symbol. Next we

introduce another characterisation of the Legendre symbol due to Gauss, usually named

as Gauss’ lemma.

For simplicity we write r � p�1
2

. We consider the set

S � t�r,�pr � 1q, � � � ,�2,�1, 1, 2, � � � , r � 1, ru.
Any integer n not divisible by p is congruent to one element in S, which is called the least

residue of n modulo p. If p � a, let µ be the number of integers among a, 2a, � � � , ra which

have negative least residues modulo p. For example, let p � 7 and a � 4. Then r � 3,

and the residues of 1 � 4, 2 � 4, 3 � 4 are �3, 1,�2 respectively. Thus in this case µ � 2.

Gauss’ lemma is the following very simple yet very powerful result:

Lemma 5.1 (Gauss’ Lemma). Let p be an odd prime, r � p�1
2

, p � a, and µ the number of

integers among a, 2a, � � � , ra which have negative least residues modulo p. Then
� a
p

	
�

p�1qµ.

Proof. Let ml or �ml be the least residue of la modulo p, where ml is positive. As l

ranges between 1 and r, µ is clearly the number of minus signs that occur in this way.

We claim that ml � mk for any l � k and 1 ¤ l, k ¤ r. For, if ml � mk, then la � �ka
pmod pq, and since p � a this implies that l � k � 0 pmod pq. The latter congruence is

impossible since l � k and |l � k| ¤ |l| � |k| ¤ p� 1. It follows that the sets t1, 2, � � � , ru
and tm1,m2, � � � ,mru coincide. Multiply the congruences

1 � a � �m1 pmod pq,
2 � a � �m2 pmod pq,

...,

r � a � �mr pmod pq.
Notice that the number of negative signs on the right hand sides is µ, we obtain

r! � ar � p�1qµ � r! pmod pq.
Since p � r!, this yields

ar � p�1qµ pmod pq.
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By Euler’s criterion ar � a
p�1
2 � p a

p
q pmod pq and the result follows. �

We use Gauss’ lemma to give another characterisation of the Legendre symbol, which will

be used in the proof of quadratic reciprocity.

For later convenience, we introduce the so-called floor function. For any real number

x, we define the symbol rxs to be the largest integer less than or equal to x, which is

sometimes also called the integral part of x. But pay attention when x is negative. For

example, r3s � r3.2s � 3, r�3s � �3 but r�3.2s � �4.

If a, b P Z and b � 0, we know that there is a unique way to write a � bq � c for some

q, c P Z and 0 ¤ c   |b|, where q is called the quotient and c is called the remainder (or

Euclidean residue). If we assume b ¡ 0, then q is the integral part of the fraction a
b
; i.e.�

a
b

� � q. In other words we can write a � b
�
a
b

�� c.

Lemma 5.2. Let p be an odd prime, a an odd integer not divisible by p. Let

t �
p�1
2̧

l�1

�
la

p

�
.

Then
� a
p

	
� p�1qt.

Proof. For simplicity we write r � p�1
2

. For each l � 1, 2, � � � , r, we can write

la � p

�
la

p

�
� cl,

where 0 ¤ cl ¤ p� 1. We take the sum of the l equations and get

a �
ŗ

l�1

l � pt�
ŗ

l�1

cl. (5.1)

Recall we wrote �ml for the least residue in the proof of Lemma 5.1. It is clear that

cl �
#
ml if the sign in front of ml is positive;

�ml � p if the sign in front of ml is negative.

Modulo 2 we get

cl �
#
ml pmod 2q if the sign in front of ml is positive;

ml � p pmod 2q if the sign in front of ml is negative.

Now we take the sum of the l congruences and keep in mind that the negative sign in

front of ml appears exactly µ times:
ŗ

l�1

cl �
ŗ

l�1

ml � pµ pmod 2q.
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We also know that tm1,m2, � � � ,mru is simply a permutation of t1, 2, � � � , ru, hence
ŗ

l�1

cl �
ŗ

l�1

l � pµ pmod 2q. (5.2)

Now we use (5.2) to rewrite (5.1) as

a �
ŗ

l�1

l � pt�
ŗ

l�1

l � pµ pmod 2q.

Since a is odd, we get pt�pµ � 0 pmod 2q. Since p is also odd, we get t�µ � 0 pmod 2q;
that is t � µ pmod 2q. By Lemma 5.1 we have� a

p

	
� p�1qµ � p�1qt,

as desired. �
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