5. QUADRATIC RECIPROCITY

We introduce yet another way of computing Legendre symbol due to Gauss and give a
proof of the law of quadratic reciprocity.

5.1. Gauss’ lemma. For any odd prime p and any integer a not divisible by p, Euler’s
criterion Proposition 4.4 (1) gives a characterisation of the Legendre symbol. Next we
introduce another characterisation of the Legendre symbol due to Gauss, usually named
as Gauss’ lemma.

For simplicity we write r = p%l. We consider the set
S={-r,—-(r—-1),-,-2,-1,1,2,--- ;r—1,r}.

Any integer n not divisible by p is congruent to one element in S, which is called the least
residue of n modulo p. If p t a, let © be the number of integers among a, 2a, - - - , ra which
have negative least residues modulo p. For example, let p = 7 and @ = 4. Then r = 3,
and the residues of 1-4,2-4,3 -4 are —3, 1, —2 respectively. Thus in this case u = 2.

Gauss’ lemma is the following very simple yet very powerful result:

Lemma 5.1 (Gauss’ Lemma). Let p be an odd prime, r = p%l, p [ a, and p the number of

integers among a,2a,--- ,ra which have negative least residues modulo p. Then (£> =
p

(="

Proof. Let m; or —m; be the least residue of la modulo p, where m; is positive. As [
ranges between 1 and r, p is clearly the number of minus signs that occur in this way.
We claim that m; # my, for any [ # k and 1 < [,k < r. For, if m; = my, then la = tka
(mod p), and since p } a this implies that [ + £k = 0 (mod p). The latter congruence is
impossible since [ # k and |l £ k| < |I| + |k| < p — 1. It follows that the sets {1,2,--- ,r}
and {my,ma,--- ,m,} coincide. Multiply the congruences

l-a=+my; (mod p),
2-a=+my (mod p),
r-a=+m, (mod p).
Notice that the number of negative signs on the right hand sides is p, we obtain
rl-a" = (=1)"-r! (mod p).

Since p f r!, this yields

a" = (=1)" (mod p).
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p—1

By Euler’s criterion a” = a2 = (£) (mod p) and the result follows. O

P
We use Gauss’ lemma to give another characterisation of the Legendre symbol, which will
be used in the proof of quadratic reciprocity.

For later convenience, we introduce the so-called floor function. For any real number
x, we define the symbol [x] to be the largest integer less than or equal to z, which is

sometimes also called the integral part of . But pay attention when z is negative. For
example, [3] = [3.2] = 3, [-3] = =3 but [-3.2] = —4.

If a,b € Z and b # 0, we know that there is a unique way to write a = bq + ¢ for some

q,c € Z and 0 < ¢ < |b|, where ¢ is called the quotient and c¢ is called the remainder (or

Euclidean residue). If we assume b > 0, then ¢ is the integral part of the fraction ¢; i.e.
[%] = ¢. In other words we can write a = b [%] +c.

Lemma 5.2. Let p be an odd prime, a an odd integer not divisible by p. Let

Jun

5]

il
Then (%) — (-1)'.

Proof. For simplicity we write r = ’%1. For each [ =1,2,--- ,r, we can write

q
la=p|—|+a,
p

where 0 < ¢; < p— 1. We take the sum of the [ equations and get

a-ilzpt+icl. (5.1)
=1 =1

Recall we wrote +m; for the least residue in the proof of Lemma 5.1. It is clear that

o if the sign in front of my is positive;
‘- {—ml +p if the sign in front of m; is negative.
Modulo 2 we get
_ }ym; (mod 2) if the sign in front of m, is positive;
“= {ml +p (mod 2) if the sign in front of m, is negative.

Now we take the sum of the [ congruences and keep in mind that the negative sign in
front of m; appears exactly p times:

r

S

=1

Zml +pp (mod 2).
=1
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We also know that {mq, mg,--- ,m,} is simply a permutation of {1,2,--- ,r}, hence
ch = Zl +pp (mod 2). (5.2)
=1 =1

Now we use (5.2) to rewrite (5.1) as

a- Zl
=1

Since a is odd, we get pt + pu =0 (mod 2). Since p is also odd, we get t+p =0 (mod 2);
that is t = 1 (mod 2). By Lemma 5.1 we have

pt + Zl +pu (mod 2).
=1

as desired. O
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