
6.2. Number fields. We introduce the notion of number fields as follows:

Definition 6.8. An (algebraic) number field is a field K, such that Q � K � C, and K

has finite degree (dimension as a vector space) over Q.

Example 6.9. Simple example: the field Q itself is a number field of degree 1 over Q.

We recall a useful result in Algebra 2B which gives a lot of examples of number fields.

Proposition 6.10. Let k � K be a field extension, and let α P K be a root of some

non-zero polynomial gpxq P krxs. Then the set tfpαq P K | f P krxsu is a field, denoted by

krαs or kpαq, satisfying k � kpαq � K.

Moreover, assume gpxq is irreducible and deg gpxq � n, then kpαq has degree n over k
and t1, α, α2, � � � , αn�1u is a basis of kpαq over k.

Proof. See Proposition 2.23 (2013) or Theorem 4.8 (2014) in Algebra 2B. �

Remark 6.11. We point out two things.

(1) In Algebra 2B, we used the notation krαs. But in literature (especially in literature

on field theory) the notation kpαq seems to be used more often. We will use the

latter.

(2) Roughly speaking, if an element α in the large field is the root of a polynomial with

coefficients in the small field, then we can “add” α to the small field to generate

an intermediate field, which has a finite degree over the small field, with a basis

given by powers of α. If the small and large fields are Q and C respectively, we

can get lots of examples of number fields.

Example 6.12. In Proposition 6.10, we take k � Q and K � C.

(1) For any square-free integer d � 1,
?
d is a root of the irreducible polynomial

x2 � d P Qrxs. Therefore Qp?dq � ta � b
?
d | a, b P Qu is number field of degree

2 over Q. A number field of this form is called a quadratic field. It is called a real

quadratic field if d ¡ 0, or an imaginary quadratic field if d   0. For instance,

Qp?2q is a real quadratic fields and Qpiq is an imaginary quadratic field.

(2) We have that 3
?

2 is a root of the irreducible polynomial x3 � 2 P Qrxs. Therefore

Qp 3
?

2q � ta� b 3
?

2 � c 3
?

4 | a, b, c P Qu is a number field of degree 3 over Q. This

is an example of the so-called cubic field.

(3) We have that ζ � cos 2π
5
� i sin 2π

5
is the root of an irreducible polynomial x4 �

x3 � x2 � x � 1. Therefore Qpζq is a number field of degree 4 over Q. This is an

example of the so-called cyclotomic field.
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The following lemma justifies the name.

Lemma 6.13. Every element in a number field is an algebraic number.

Proof. Let K be a number field of degree n over Q and α P K. Then 1, α, α2, � � � , αn must

be linearly dependent over Q; i.e. a0� a1α� a2α
2� � � �� anαn � 0, where ai P Q for each

i and all ai’s are not simultaneously zero. This implies α is a root of a polynomial with

rational coefficients, hence is an algebraic number. �

We then introduce the notions of traces and norms.

Definition 6.14. Let K be a number field. Every α P K defines a Q-linear transformation

Lα : K Ñ K, γ ÞÑ αγ.

The trace of the linear transformation Lα is called the trace of α in K, denoted by TKpαq.
The determinant of the linear transformation Lα is called the norm of α in K, denoted

by NKpαq.
Remark 6.15. We make the following comments about this definition.

(1) The Q-linearity of Lα can be easily checked by observing αpγ1 � γ2q � αγ1 � αγ2

for any γ1, γ2 P K, and αpλγq � λpαγq for any γ P K and λ P Q.

(2) The trace and norm depends on both K and α. The same algebraic number α,

when considered as an element of different number fields, could have different

traces and norms. If there is only one number field K in consideration, we often

omit the reference to K and write T pαq and Npαq for simplicity.

(3) In practice we can choose any Q-basis of K and write the linear transformation Lα
as a matrix to compute T pαq and Npαq. We know that the trace and determinant

of a linear transformation are independent of the choice of the basis, but choosing

the basis wisely can make the computation easier.

The following properties can be easily proved using the language of linear transformations

and matrices.

Lemma 6.16. Let K be a number field of degree n over Q, α, β P K and a P Q. Then

(1) T pα � βq � T pαq � T pβq, Npαβq � NpαqNpβq;
(2) T paαq � aT pαq, Npaβq � anNpβq;
(3) T p1q � n, Np1q � 1;

(4) Npαq � 0 iff α � 0.

Proof. We leave them as exercises. See Exercise 6.3. �
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We show two examples of computation of traces and norms.

Example 6.17. Consider the number field K � Q. For any α P K, we compute its trace

and norm. We choose a Q-basis t1u for K, then the matrix of Lα under this basis is a

1� 1 matrix with the only entry α. Hence T pαq � α and Npαq � α.

Example 6.18. Consider the quadratic field K � Qp?dq where d � 1 is a square-free

integer. For any α � a� b
?
d P K, we compute its trace and norm. We choose a Q-basis

t1,?du for K. Since Lαp1q � a � b
?
d and Lαp

?
dq � bd � a

?
d, the matrix of Lα under

this basis is

�
a bd

b a

�
. Therefore T pαq � 2a and Npαq � a2 � b2d.

A crucial property of the trace and the norm is the following:

Proposition 6.19. Let K be a number field and α an algebraic integer in K, then

T pαq, Npαq P Z.

Sketch of proof. The proof of this result will be left in Exercise 6.4. Here we explain briefly

the motivation and main idea in the proof and give some hints step by step.

By Definition 6.14, if we can find a Q-basis for K, under which the matrix of the linear

transformation Lα has integral entries, then T pαq and Npαq are integers. Therefore the

proof contains two steps: find a Q-basis for K; show that the matrix of Lα under this

basis has integer entries.

More precisely, we consider an intermediate field Q � Qpαq � K as in Proposition 6.10.

Then for some m ¡ 0, we know t1, α, α2, � � � , αm�1u is a basis of Qpαq over Q. On the

other hand, we choose any basis of K over Qpαq, say tβ0, β1, � � � , βn�1u. We can prove

that the set

S �  
αiβj | 0 ¤ i ¤ m� 1, 0 ¤ j ¤ n� 1

(
is a basis of K over Q. For this purpose, we need to show that S is a spanning set and

elements in S are independent. Then we write down the matrix for Lα under this basis

and conclude all entries are integers. �
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