7. The Ring of Integers in a Number Field

We introduce the ring of integers \mathcal{O}_{K} in a number field K and determine the additive structure of \mathcal{O}_{K}.
7.1. The ring of integers. We first introduce the central object that we will study.

Let K be a number field. We consider the set of all algebraic integers in K. By Corollary 6.7 and the fact that K is a field, this set is closed under addition, multiplication and inverse, hence is a subring of the ring of all algebraic integers. This ring is called the ring of (algebraic) integers in K, denote by \mathcal{O}_{K}. The remaining part of this course will be devoted to study various properties of this ring.

The first obvious question, is to understand the elements in \mathcal{O}_{K}. We study this question in two concrete examples.

Proposition 7.1. A rational number $\alpha \in \mathbb{Q}$ is an algebraic integer iff $\alpha \in \mathbb{Z}$.

Proof. If $\alpha \in \mathbb{Z}$, it is clearly an algebraic integer. For the other direction, if α is an algebraic integer, by Proposition 6.19, we have $T(\alpha) \in \mathbb{Z}$ and $N(\alpha) \in \mathbb{Z}$. By Example 6.17, in this case $T(\alpha)=N(\alpha)=\alpha$, hence $\alpha \in \mathbb{Z}$.

Proposition 7.2. Let $d \neq 1$ be a square-free integer and $K=\mathbb{Q}(\sqrt{d})$ the corresponding quadratic field. The elements in the ring of integers \mathcal{O}_{K} is given by $\{a+b \omega \mid a, b \in \mathbb{Z}\}$, where

$$
\omega= \begin{cases}\sqrt{d} & \text { if } d \equiv 2 \text { or } 3 \quad(\bmod 4) \\ \frac{1}{2}(1+\sqrt{d}) & \text { if } d \equiv 1 \quad(\bmod 4)\end{cases}
$$

Proof. We first show that for any $a, b \in \mathbb{Z}, a+b \omega$ is an algebraic number. By Proposition 6.6, it suffices to show ω is an algebraic integer. If $d \equiv 2 \operatorname{or} 3(\bmod 4), \omega$ is a root of $x^{2}-d$ hence is an algebraic integer. If $d \equiv 1(\bmod 4), \omega$ is a root of $x^{2}-x-\frac{d-1}{4}$ hence is also an algebraic integer.

It remains to show that every algebraic integer in K has the given form. Let $\alpha=r+s \sqrt{d}$ is an algebraic integer for some $r, s \in \mathbb{Q}$. By Example 6.17 and Proposition 6.19, we know $T(r+s \sqrt{d})=2 r \in \mathbb{Z}$ and $N(r+s \sqrt{d})=r^{2}-s^{2} d \in \mathbb{Z}$. Thus $(2 r)^{2}-(2 s)^{2} d \in 4 \mathbb{Z}$ and $(2 s)^{2} d \in \mathbb{Z}$. Since d is square-free, this implies $2 s \in \mathbb{Z}$.

Now we consider the case $d \equiv 2$ or $3(\bmod 4)$. If both $2 r$ and $2 s$ are odd, then $(2 r)^{2} \equiv 1$ $(\bmod 4)$ and $(2 s)^{2} d \equiv d(\bmod 4)$, which contradicts $(2 r)^{2}-(2 s)^{2} d \in 4 \mathbb{Z}$. Hence at least one of them is even. Then by $(2 r)^{2} \equiv(2 s)^{2} d(\bmod 4)$ again and $4 \not \backslash d$ we conclude that both $2 r$ and $2 s$ are even; i.e. $r, s \in \mathbb{Z}$. So $\alpha=r+s \sqrt{d}$ has the given form.

Now we consider the other case $d \equiv 1(\bmod 4)$. By $(2 r)^{2} \equiv(2 s)^{2} d \equiv(2 s)^{2}(\bmod 4)$ we know that $2 r$ and $2 s$ are either both even or both odd; i.e. $r-s \in \mathbb{Z}$. Then $\alpha=r+s \sqrt{d}=$ $(r-s)+s(1+\sqrt{d})=(r-s)+2 s \cdot \omega$ has the given form.

Now we turn to the notion of the discriminant.
Definition 7.3. Let K be a number field of degree n over \mathbb{Q} and $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}$ an n-tuple of elements of K. We define the discriminant of the n-tuple to be

$$
\Delta\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}\right)=\operatorname{det}\left(\begin{array}{cccc}
T\left(\alpha_{1} \alpha_{1}\right) & T\left(\alpha_{1} \alpha_{2}\right) & \cdots & T\left(\alpha_{1} \alpha_{n}\right) \tag{7.1}\\
T\left(\alpha_{2} \alpha_{1}\right) & T\left(\alpha_{2} \alpha_{2}\right) & \cdots & T\left(\alpha_{2} \alpha_{n}\right) \\
\vdots & \vdots & \ddots & \vdots \\
T\left(\alpha_{n} \alpha_{1}\right) & T\left(\alpha_{n} \alpha_{2}\right) & \cdots & T\left(\alpha_{n} \alpha_{n}\right)
\end{array}\right) .
$$

Remark 7.4. If $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n} \in \mathcal{O}_{K}$, then each entry of the matrix is an integer by Proposition 6.19, hence the discriminant $\Delta\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}\right) \in \mathbb{Z}$.

Proposition 7.5. The n-tuple $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}$ is a \mathbb{Q}-basis for K iff $\Delta\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}\right) \neq 0$.
Proof. We first show that if $\left\{\alpha_{i} \mid 1 \leqslant i \leqslant n\right\}$ are linearly dependent over \mathbb{Q}, then $\Delta\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}\right)=0$. By assumption we can find $a_{1}, a_{2}, \cdots, a_{n} \in \mathbb{Q}$, not all zero, such that $\sum_{i=1}^{n} a_{i} \alpha_{i}=0$. Multiply this equation by α_{j} and take the trace. By Lemma 6.16 we get $\sum_{i=1}^{n} a_{i} T\left(\alpha_{i} \alpha_{j}\right)=0$ for each $j=1,2, \cdots, n$. This shows that the rows of the matrix in (7.1) are linearly dependent, so its determinant is zero.

We then show that if $\left\{\alpha_{i} \mid 1 \leqslant i \leqslant n\right\}$ is a \mathbb{Q}-basis for K, then $\Delta\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}\right) \neq 0$. Assume on the contrary that $\Delta\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}\right)=0$, then the rows of the matrix in (7.1) are linearly dependent, so we can find $a_{1}, a_{2}, \cdots, a_{n} \in \mathbb{Q}$, not all zero, such that $\sum_{i=1}^{n} a_{i} T\left(\alpha_{i} \alpha_{j}\right)=0$ for each $j=1,2, \cdots, n$. Let $\alpha=\sum_{i=1}^{n} a_{i} \alpha_{i}$. By Lemma 6.16 we get $T\left(\alpha \alpha_{j}\right)=0$ for each $j=1,2, \cdots, n$. Assume on the contrary that $\left\{\alpha_{i} \mid 1 \leqslant i \leqslant n\right\}$ is a basis, then $\alpha \neq 0$, and there exist $b_{1}, b_{2}, \cdots, b_{n} \in \mathbb{Q}$ such that $\alpha^{-1}=\sum_{j=1}^{n} b_{j} \alpha_{j}$. By Lemma 6.16 again we have $T\left(\alpha \alpha^{-1}\right)=\sum_{j=1}^{n} b_{j} T\left(\alpha \alpha_{j}\right)=0$. Contradiction to $T(1)=n \neq 0$.

Proposition 7.6. Suppose $\left\{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}\right\}$ and $\left\{\beta_{1}, \beta_{2}, \cdots, \beta_{n}\right\}$ are both n-tuples in K. Assume that for each $j, \alpha_{j}=\sum_{i=1}^{n} a_{i j} \beta_{i}$ for some $a_{i j} \in \mathbb{Q}$ and $M=\left(a_{i j}\right)$ the transition matrix, then

$$
\Delta\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}\right)=(\operatorname{det} M)^{2} \Delta\left(\beta_{1}, \beta_{2}, \cdots, \beta_{n}\right) .
$$

Proof. (This proof is not covered in lecture and is non-examinable.) We have $\alpha_{j} \alpha_{l}=$ $\sum_{i} \sum_{k} a_{i j} a_{k l} \beta_{i} \beta_{k}$. Taking the traces of both sides we get $T\left(\alpha_{j} \alpha_{l}\right)=\sum_{i} \sum_{k} a_{i j} a_{k l} T\left(\beta_{i} \beta_{k}\right)$. Let $A=\left(T\left(\alpha_{j} \alpha_{l}\right)\right), B=\left(T\left(\beta_{i} \beta_{k}\right)\right)$ be $n \times n$ matrices. Then we find the matrix identity $A=M^{\prime} B M$ where M^{\prime} is the transpose of M. Take the determinant on both sides to get $\operatorname{det} A=(\operatorname{det} M)^{2} \operatorname{det} B$, as desired.

