
7. The Ring of Integers in a Number Field

We introduce the ring of integers OK in a number field K and determine the additive

structure of OK .

7.1. The ring of integers. We first introduce the central object that we will study.

Let K be a number field. We consider the set of all algebraic integers in K. By Corollary

6.7 and the fact that K is a field, this set is closed under addition, multiplication and

inverse, hence is a subring of the ring of all algebraic integers. This ring is called the ring

of (algebraic) integers in K, denote by OK . The remaining part of this course will be

devoted to study various properties of this ring.

The first obvious question, is to understand the elements in OK . We study this question

in two concrete examples.

Proposition 7.1. A rational number α P Q is an algebraic integer iff α P Z.

Proof. If α P Z, it is clearly an algebraic integer. For the other direction, if α is an

algebraic integer, by Proposition 6.19, we have T pαq P Z and Npαq P Z. By Example

6.17, in this case T pαq � Npαq � α, hence α P Z. �

Proposition 7.2. Let d � 1 be a square-free integer and K � Qp?dq the corresponding

quadratic field. The elements in the ring of integers OK is given by ta � bω | a, b P Zu,
where

ω �
#?

d if d � 2 or 3 pmod 4q;
1
2
p1�?

dq if d � 1 pmod 4q.

Proof. We first show that for any a, b P Z, a� bω is an algebraic number. By Proposition

6.6, it suffices to show ω is an algebraic integer. If d � 2 or 3 pmod 4q, ω is a root of

x2 � d hence is an algebraic integer. If d � 1 pmod 4q, ω is a root of x2 � x � d�1
4

hence

is also an algebraic integer.

It remains to show that every algebraic integer in K has the given form. Let α � r� s?d
is an algebraic integer for some r, s P Q. By Example 6.17 and Proposition 6.19, we know

T pr � s
?
dq � 2r P Z and Npr � s

?
dq � r2 � s2d P Z. Thus p2rq2 � p2sq2d P 4Z and

p2sq2d P Z. Since d is square-free, this implies 2s P Z.

Now we consider the case d � 2 or 3 pmod 4q. If both 2r and 2s are odd, then p2rq2 � 1

pmod 4q and p2sq2d � d pmod 4q, which contradicts p2rq2 � p2sq2d P 4Z. Hence at least

one of them is even. Then by p2rq2 � p2sq2d pmod 4q again and 4 � d we conclude that

both 2r and 2s are even; i.e. r, s P Z. So α � r � s
?
d has the given form.
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Now we consider the other case d � 1 pmod 4q. By p2rq2 � p2sq2d � p2sq2 pmod 4q we

know that 2r and 2s are either both even or both odd; i.e. r�s P Z. Then α � r�s?d �
pr � sq � sp1�?

dq � pr � sq � 2s � ω has the given form. �

Now we turn to the notion of the discriminant.

Definition 7.3. Let K be a number field of degree n over Q and α1, α2, � � � , αn an n-tuple

of elements of K. We define the discriminant of the n-tuple to be

∆pα1, α2, � � � , αnq � det

�
����
T pα1α1q T pα1α2q � � � T pα1αnq
T pα2α1q T pα2α2q � � � T pα2αnq

...
...

. . .
...

T pαnα1q T pαnα2q � � � T pαnαnq

�
���. (7.1)

Remark 7.4. If α1, α2, � � � , αn P OK , then each entry of the matrix is an integer by

Proposition 6.19, hence the discriminant ∆pα1, α2, � � � , αnq P Z.

Proposition 7.5. The n-tuple α1, α2, � � � , αn is a Q-basis for K iff ∆pα1, α2, � � � , αnq � 0.

Proof. We first show that if tαi | 1 ¤ i ¤ nu are linearly dependent over Q, then

∆pα1, α2, � � � , αnq � 0. By assumption we can find a1, a2, � � � , an P Q, not all zero,

such that
°n
i�1 aiαi � 0. Multiply this equation by αj and take the trace. By Lemma

6.16 we get
°n
i�1 aiT pαiαjq � 0 for each j � 1, 2, � � � , n. This shows that the rows of the

matrix in (7.1) are linearly dependent, so its determinant is zero.

We then show that if tαi | 1 ¤ i ¤ nu is a Q-basis for K, then ∆pα1, α2, � � � , αnq � 0.

Assume on the contrary that ∆pα1, α2, � � � , αnq � 0, then the rows of the matrix in

(7.1) are linearly dependent, so we can find a1, a2, � � � , an P Q, not all zero, such that°n
i�1 aiT pαiαjq � 0 for each j � 1, 2, � � � , n. Let α � °n

i�1 aiαi. By Lemma 6.16 we get

T pααjq � 0 for each j � 1, 2, � � � , n. Assume on the contrary that tαi | 1 ¤ i ¤ nu is a

basis, then α � 0, and there exist b1, b2, � � � , bn P Q such that α�1 � °n
j�1 bjαj. By Lemma

6.16 again we have T pαα�1q � °n
j�1 bjT pααjq � 0. Contradiction to T p1q � n � 0. �

Proposition 7.6. Suppose tα1, α2, � � � , αnu and tβ1, β2, � � � , βnu are both n-tuples in K.

Assume that for each j, αj �
°n
i�1 aijβi for some aij P Q and M � paijq the transition

matrix, then

∆pα1, α2, � � � , αnq � pdetMq2 ∆pβ1, β2, � � � , βnq.

Proof. (This proof is not covered in lecture and is non-examinable.) We have αjαl �°
i

°
k aijaklβiβk. Taking the traces of both sides we get T pαjαlq �

°
i

°
k aijaklT pβiβkq.

Let A � pT pαjαlqq, B � pT pβiβkqq be n � n matrices. Then we find the matrix identity

A �M 1BM where M 1 is the transpose of M . Take the determinant on both sides to get

detA � pdetMq2 detB, as desired. �
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