7. THE RING OF INTEGERS IN A NUMBER FIELD

We introduce the ring of integers Ok in a number field K and determine the additive
structure of O.

7.1. The ring of integers. We first introduce the central object that we will study.

Let K be a number field. We consider the set of all algebraic integers in K. By Corollary
6.7 and the fact that K is a field, this set is closed under addition, multiplication and
inverse, hence is a subring of the ring of all algebraic integers. This ring is called the ring
of (algebraic) integers in K, denote by Ok. The remaining part of this course will be
devoted to study various properties of this ring.

The first obvious question, is to understand the elements in Og. We study this question
in two concrete examples.

Proposition 7.1. A rational number o € Q is an algebraic integer iff o € Z.

Proof. If a € Z, it is clearly an algebraic integer. For the other direction, if « is an
algebraic integer, by Proposition 6.19, we have T'(«) € Z and N(a) € Z. By Example
6.17, in this case T'(«) = N(a) = «, hence o € Z. O

Proposition 7.2. Let d # 1 be a square-free integer and K = @(\/&) the corresponding
quadratic field. The elements in the ring of integers Ok is given by {a + bw | a,b € Z},
where
Vd ifd=2 or3 (mod 4);
YT {1(1 +Vd) ifd=1 (mod4).
2

Proof. We first show that for any a,b € Z, a + bw is an algebraic number. By Proposition
6.6, it suffices to show w is an algebraic integer. If d = 2 or 3 (mod 4), w is a root of
2* — d hence is an algebraic integer. If d =1 (mod 4), w is a root of 22 — z — ! hence
is also an algebraic integer.

It remains to show that every algebraic integer in K has the given form. Let o = r 4 sv/d
is an algebraic integer for some r, s € Q. By Example 6.17 and Proposition 6.19, we know
T(r+ svd) = 2r € Z and N(r + sv/d) = r> — s°d € Z. Thus (2r)? — (2s)%d € 4Z and
(25)%d € Z. Since d is square-free, this implies 2s € Z.

Now we consider the case d =2 or 3 (mod 4). If both 2r and 2s are odd, then (2r)* =
(mod 4) and (2s)%d = d (mod 4), which contradicts (2r)? — (2s)2d € 4Z. Hence at least
one of them is even. Then by (2r)? = (2s)2d (mod 4) again and 4 } d we conclude that

both 2r and 2s are even; i.e. r,s € Z. So a = r + sv/d has the given form.
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Now we consider the other case d =1 (mod 4). By (2r)* = (2s)?d = (25)* (mod 4) we
know that 2r and 2s are either both even or both odd; i.e. r—s e Z. Then o = r+svVd =
(r —s) + s(1++/d) = (r — s) + 2s - w has the given form. O

Now we turn to the notion of the discriminant.

Definition 7.3. Let K be a number field of degree n over Q and a, g, - - - , o, an n-tuple
of elements of K. We define the discriminant of the n-tuple to be

T(aqon) T(ajag) -+ T(oman)
T(as T(aso - T(agoy,
Alar, ag, -+, ay) = det (0201) Tlaza) ‘ (020) (7.1)
T(anar) T(apas) -+ T(anam)
Remark 7.4. If aq, 9, -+ ,a, € Ok, then each entry of the matrix is an integer by
Proposition 6.19, hence the discriminant A(ay, ag, -+, ay,) € Z.

Proposition 7.5. The n-tuple aq, a, - -+ , oy, is a Q-basis for K iff Alag, ag, -+ ,ap) # 0.

Proof. We first show that if {a; | 1 < ¢ < n} are linearly dependent over Q, then
Aoy, g, -+ ,a,) = 0. By assumption we can find ay,a9,---,a, € Q, not all zero,
such that »"  a;a; = 0. Multiply this equation by a; and take the trace. By Lemma
6.16 we get >\, a;T(ca;a;) = 0 for each j = 1,2,--- ,n. This shows that the rows of the
matrix in (7.1) are linearly dependent, so its determinant is zero.

We then show that if {a; | 1 < i < n} is a Q-basis for K, then A(ay, g, -+, ) # 0.

Assume on the contrary that A(ag,ag,---,a,) = 0, then the rows of the matrix in
(7.1) are linearly dependent, so we can find aj,as, -+ ,a, € Q, not all zero, such that
> aiT (o) =0 for each j = 1,2,--- ,n. Let o = > | a;c;. By Lemma 6.16 we get
T(awj) =0 for each j = 1,2,--- ,n. Assume on the contrary that {a; | 1 < i < n}is a

basis, then a # 0, and there exist by, by, -+ , b, € Qsuch that o™ ! = Z?:l bja;;. By Lemma
6.16 again we have T'(aa ") = 37", b;T(aq;) = 0. Contradiction to T(1) =n # 0. O

Proposition 7.6. Suppose {aq, g, ,a,} and {51, Ba, - -+, Bn} are both n-tuples in K.
Assume that for each j, aj = Y| a;;f; for some a;; € Q and M = (a;j) the transition
matriz, then

Alag, g, -+, ap) = (det M)2 A(By, Ba, -+, Bn).

Proof. (This proof is not covered in lecture and is non-examinable.) We have ajoy =
D >k @ijarBiB. Taking the traces of both sides we get T'(covjaq) = >3, Dy aiiarT(BiBr)-
Let A = (T'(ojoy)), B = (T'(Bifk)) be n x n matrices. Then we find the matrix identity
A = M'BM where M’ is the transpose of M. Take the determinant on both sides to get
det A = (det M)? det B, as desired. O
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