7.2. Integral bases of ideals. We focus on the additive structure of the ring \mathcal{O}_{K}, then \mathcal{O}_{K} is an (additive) abelian group, and every ideal I of \mathcal{O}_{K} is an abelian subgroup. We are aiming to show that every ideal I is a free abelian group.

Lemma 7.7. For any $\beta \in K$, there exists some $b \in \mathbb{Z}, b \neq 0$, such that $b \beta \in \mathcal{O}_{K}$.
Proof. By Lemma 6.13, β is an algebraic number. Therefore β satisfies an equation

$$
a_{0} \beta^{m}+a_{1} \beta^{m-1}+a_{2} \beta^{m-2}+\cdots+a_{m}=0
$$

where $a_{i} \in \mathbb{Z}$ for each i and $a_{0} \neq 0$. Multiply both sides by a_{0}^{m-1} to get

$$
\left(a_{0} \beta\right)^{m}+a_{1}\left(a_{0} \beta\right)^{m-1}+a_{2} a_{0}\left(a_{0} \beta\right)^{m-2}+\cdots+a_{m} a_{0}^{m-1}=0 .
$$

This shows that $a_{0} \beta$ is an algebraic integer since $a_{i} a_{0}^{i-1} \in \mathbb{Z}$ for each i.
Lemma 7.8. Every non-zero ideal I of \mathcal{O}_{K} contains a basis for K over \mathbb{Q}.

Proof. Assume the degree of K over \mathbb{Q} is n. Pick any \mathbb{Q}-basis $\beta_{1}, \beta_{2}, \cdots, \beta_{n}$ of K. By Lemma 7.7 we can find some $b \in \mathbb{Z}, b \neq 0$, such that $b \beta_{1}, b \beta_{2}, \cdots, b \beta_{n} \in \mathcal{O}_{K}$. Indeed, there is some non-zero $b_{i} \in \mathbb{Z}$ for each β_{i} such that $b_{i} \beta_{i} \in \mathcal{O}_{K}$. Then take b to be any common multiple all b_{i} 's.

We choose any $\alpha \in I, \alpha \neq 0$. Then $b \beta_{1} \alpha, b \beta_{2} \alpha, \cdots, b \beta_{n} \alpha$ are in I and form a \mathbb{Q}-basis of K. Indeed, for any $a_{1}, a_{2}, \cdots, a_{n} \in \mathbb{Q}$, if

$$
a_{1} b \beta_{1} \alpha+a_{2} b \beta_{2} \alpha+\cdots+a_{n} b \beta_{n} \alpha=0
$$

then since $b \alpha \neq 0$ we have

$$
a_{1} \beta_{1}+a_{2} \beta_{2}+\cdots+a_{n} \beta_{n}=0,
$$

which implies $a_{i}=0$ for each i. Hence $b \beta_{1} \alpha, b \beta_{2} \alpha, \cdots, b \beta_{n} \alpha$ are \mathbb{Q}-independent and is a \mathbb{Q}-basis for K.

In other words, the above proposition says we can find a \mathbb{Q}-basis for K which entirely consists of algebraic integers. There are in general many choices for the \mathbb{Q}-basis of K in \mathcal{O}_{K}, but the follow result shows that some of them are much preferred.

Proposition 7.9. Let I be a non-zero ideal of \mathcal{O}_{K}. Then we can find $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n} \in I$ such that they form $a \mathbb{Q}$-basis for K, and for every element α in the field $K, \alpha \in I$ iff $\alpha=a_{1} \alpha_{1}+a_{2} \alpha_{2}+\cdots+a_{n} \alpha_{n}$ for some $a_{1}, a_{2}, \cdots, a_{n} \in \mathbb{Z}$.

Proof. By Lemma 7.8, I contains \mathbb{Q}-bases for K. By Remark 7.4 and Proposition 7.5 , the discriminant of any such basis is a non-zero integer. Therefore we can always find a \mathbb{Q}-basis for \mathcal{O}_{K} in I such that $\left|\Delta\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}\right)\right|$ minimal.

It is clear that every integral linear combination of $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}$ is in I since I is an ideal. For the other direction, for any $\alpha \in I$, we can write $\alpha=\gamma_{1} \alpha_{1}+\gamma_{2} \alpha_{2}+\cdots+\gamma_{n} \alpha_{n}$ with $\gamma_{i} \in \mathbb{Q}$. We need to show that every $\gamma_{i} \in \mathbb{Z}$. If not, then some $\gamma_{i} \notin \mathbb{Z}$ and by relabeling if necessary we can assume $\gamma_{1} \notin \mathbb{Z}$. We write $\gamma_{1}=m+\theta$ where $m \in \mathbb{Z}$ and $0<\theta<1$. Let $\beta_{1}=\alpha-m \alpha_{1}, \beta_{2}=\alpha_{2}, \cdots, \beta_{n}=\alpha_{n}$. Then $\beta_{1}, \beta_{2}, \cdots, \beta_{n} \in I$ and is a \mathbb{Q}-basis of K. And the transition matrix between the two basis is

$$
\left(\begin{array}{cccc}
\theta & 0 & \cdots & 0 \\
\gamma_{2} & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
\gamma_{n} & 0 & \cdots & 1
\end{array}\right)
$$

By Proposition 7.6 , we find $\Delta\left(\beta_{1}, \beta_{2}, \cdots, \beta_{n}\right)=\theta^{2} \Delta\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}\right)$, which contradicts the minimality of $\left|\Delta\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}\right)\right|$ since $0<\theta<1$. Therefore $\gamma_{i} \in \mathbb{Z}$ for every i, which means every element in I is an integral linear combination of $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}$.

Remark 7.10. We make some comments.
(1) For $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}$ satisfying the conditions in Proposition 7.9, we say they form an integral basis for I. This is very useful in the sense that every element in K can be uniquely written as a rational linear combination of them, and every element in I can be uniquely written as an integral linear combination of them. We sometimes write $I=\mathbb{Z} \alpha_{1} \oplus \mathbb{Z} \alpha_{2} \oplus \cdots \oplus \mathbb{Z} \alpha_{n}$ to indicate the second condition.
(2) As a special case of Proposition 7.9, we think of \mathcal{O}_{K} as a non-zero ideal in itself. Then there is a \mathbb{Q}-basis of $K, \omega_{1}, \omega_{2}, \cdots, \omega_{n}$, such that every element $\alpha \in K$ is a \mathbb{Q}-linear combination of $\omega_{1}, \omega_{2}, \cdots, \omega_{n}$, and α is an algebraic integer iff all coefficients in this linear combination are in \mathbb{Z}. As an example, if K is a quadratic field, we can choose $\omega_{1}=1$ and $\omega_{2}=\omega$ as in Proposition 7.2.

Proposition 7.9 shows the existence of an integral basis for I, but the integral basis for I may not be unique. Although there could be many choices, they all have the same discriminants. We look at the following result:

Lemma 7.11. Suppose $\left\{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}\right\}$ and $\left\{\beta_{1}, \beta_{2}, \cdots, \beta_{n}\right\}$ are two integral bases for I. Then $\Delta\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}\right)=\Delta\left(\beta_{1}, \beta_{2}, \cdots, \beta_{n}\right)$.

Proof. We leave it as an exercise. See Exercise 7.2.

By Lemma 7.11, the discriminant of an integral basis of an ideal I in \mathcal{O}_{K} is independent of the choice of the integral basis. We have the following definition:

Definition 7.12. For any non-zero ideal I in \mathcal{O}_{K}, the discriminant of any integral basis of I is called the discriminant of the ideal I, written as $\Delta(I)$. In particular, the discriminant of \mathcal{O}_{K} is called the discriminant of the number field K, written as $\Delta\left(\mathcal{O}_{K}\right)$, or simply Δ_{K}.

Remark 7.13. By Remark 7.4 and Proposition 7.5, we know that $\Delta(I)$ (hence Δ_{K}) is always a non-zero integer.

The discriminant of a number field is an important quantity associated to a number field. In the following example we give the values for quadratic fields. We need to remember them because they will be used extensively later.

Proposition 7.14. Let $d \neq 1$ be a square-free integer and $K=\mathbb{Q}(\sqrt{d})$ a quadratic field. Then

$$
\Delta_{K}= \begin{cases}4 d & \text { if } d \equiv 2 \text { or } 3 \quad(\bmod 4) \\ d & \text { if } d \equiv 1 \quad(\bmod 4)\end{cases}
$$

Proof. We leave it as an exercise. See Exercise 7.3.

