7.2. Integral bases of ideals. We focus on the additive structure of the ring Ok, then
Ok is an (additive) abelian group, and every ideal I of O is an abelian subgroup. We
are aiming to show that every ideal I is a free abelian group.

Lemma 7.7. For any 0 € K, there exists some b€ Z, b # 0, such that b € O.

Proof. By Lemma 6.13, 5 is an algebraic number. Therefore [ satisfies an equation
aoB™ + a1+ a4 4 Ay =0
where a; € Z for each i and ag # 0. Multiply both sides by aj' ' to get
(aoB)™ + ay(aoB)™ ' + asag(aB)™ % + - - + apmag ' = 0.
This shows that agf3 is an algebraic integer since a;al ' € Z for each i. 0

Lemma 7.8. Fvery non-zero ideal I of Ok contains a basis for K over Q.

Proof. Assume the degree of K over QQ is n. Pick any Q-basis g1, 82, -+, 8, of K. By
Lemma 7.7 we can find some b € Z, b # 0, such that b31,b08s,--- , b3, € Ok. Indeed, there
is some non-zero b; € Z for each (; such that b;5; € Ok. Then take b to be any common
multiple all b;’s.

We choose any o € I, o # 0. Then bB 1, bbscx, - -+ , b8, are in I and form a Q-basis of
K. Indeed, for any aq,as,--- ,a, € Q, if

albﬁla + CLQbBQOé + -+ anbﬁna = 0,
then since bar # 0 we have
a8y +axfy + -+ apf, =0,

which implies a; = 0 for each 7. Hence bB a, b5y, - -+ , b3, are Q-independent and is a
Q-basis for K. O

In other words, the above proposition says we can find a QQ-basis for K which entirely
consists of algebraic integers. There are in general many choices for the Q-basis of K in
Ok, but the follow result shows that some of them are much preferred.

Proposition 7.9. Let I be a non-zero ideal of Og. Then we can find oy, s, -+ ,ap € 1
such that they form a Q-basis for K, and for every element o in the field K, o € I iff
a = a1y + asan + - + a,p, for some ay,as, - a4y € 2.

Proof. By Lemma 7.8, I contains (Q-bases for K. By Remark 7.4 and Proposition 7.5,
the discriminant of any such basis is a non-zero integer. Therefore we can always find a

Q-basis for Ok in I such that |A(aq, a9, -+, ;)| minimal.
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It is clear that every integral linear combination of oy, g, - -+, v, s in [ since [ is an ideal.
For the other direction, for any « € I, we can write a = Y01 + Yo + - - - + Yp, With
v; € Q. We need to show that every v; € Z. If not, then some v; ¢ Z and by relabeling if
necessary we can assume 7y; ¢ Z. We write vy = m + 6 where me Z and 0 < 6 < 1. Let
b1 =a—maq,Ps =g, -, B, =a,. Then By, B, -, B, € I and is a Q-basis of K. And
the transition matrix between the two basis is

0 0 0

Y2 1 0

Y O e 1
By Proposition 7.6, we find A(By, B2, -+, Bn) = 0*A(ay, as, -+ ,a,), which contradicts
the minimality of |A(ay, ag, -, a,)| since 0 < 8 < 1. Therefore ~; € Z for every i, which
means every element in [ is an integral linear combination of aq, s, -« , . 0]

Remark 7.10. We make some comments.

(1) For ay, as, - -, a,, satisfying the conditions in Proposition 7.9, we say they form an
integral basis for I. This is very useful in the sense that every element in K can be
uniquely written as a rational linear combination of them, and every element in
can be uniquely written as an integral linear combination of them. We sometimes
write [ = Zoy @ Zos @ - - - @ Zay, to indicate the second condition.

(2) As a special case of Proposition 7.9, we think of O as a non-zero ideal in itself.
Then there is a Q-basis of K, wi,ws, -+ ,w,, such that every element a@ € K
is a Q-linear combination of wi,ws, -+ ,w,, and « is an algebraic integer iff all
coefficients in this linear combination are in Z. As an example, if K is a quadratic
field, we can choose w; = 1 and wy = w as in Proposition 7.2.

Proposition 7.9 shows the existence of an integral basis for I, but the integral basis for
I may not be unique. Although there could be many choices, they all have the same
discriminants. We look at the following result:

Lemma 7.11. Suppose {aq,aq, -+ ,a,} and {51, Pa, -+, Bn} are two integral bases for I.
Then Alaq, ag, -+ ap) = A(B1, Ba, -+, Ba)-

Proof. We leave it as an exercise. See Exercise 7.2. 0]

By Lemma 7.11, the discriminant of an integral basis of an ideal I in O is independent

of the choice of the integral basis. We have the following definition:
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Definition 7.12. For any non-zero ideal I in Ok, the discriminant of any integral basis of
I is called the discriminant of the ideal I, written as A(I). In particular, the discriminant
of Ok is called the discriminant of the number field K, written as A(Of), or simply Ag.

Remark 7.13. By Remark 7.4 and Proposition 7.5, we know that A(I) (hence Ag) is
always a non-zero integer.

The discriminant of a number field is an important quantity associated to a number field.
In the following example we give the values for quadratic fields. We need to remember
them because they will be used extensively later.

Proposition 7.14. Let d # 1 be a square-free integer and K = Q(v/d) a quadratic field.

Then
4d ifd=2 or3 (mod 4);
Ag =
d ifd=1 (mod4).
Proof. We leave it as an exercise. See Exercise 7.3. U
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