
7.2. Integral bases of ideals. We focus on the additive structure of the ring OK , then

OK is an (additive) abelian group, and every ideal I of OK is an abelian subgroup. We

are aiming to show that every ideal I is a free abelian group.

Lemma 7.7. For any β P K, there exists some b P Z, b � 0, such that bβ P OK.

Proof. By Lemma 6.13, β is an algebraic number. Therefore β satisfies an equation

a0β
m � a1β

m�1 � a2β
m�2 � � � � � am � 0

where ai P Z for each i and a0 � 0. Multiply both sides by am�1
0 to get

pa0βqm � a1pa0βqm�1 � a2a0pa0βqm�2 � � � � � ama
m�1
0 � 0.

This shows that a0β is an algebraic integer since aia
i�1
0 P Z for each i. �

Lemma 7.8. Every non-zero ideal I of OK contains a basis for K over Q.

Proof. Assume the degree of K over Q is n. Pick any Q-basis β1, β2, � � � , βn of K. By

Lemma 7.7 we can find some b P Z, b � 0, such that bβ1, bβ2, � � � , bβn P OK . Indeed, there

is some non-zero bi P Z for each βi such that biβi P OK . Then take b to be any common

multiple all bi’s.

We choose any α P I, α � 0. Then bβ1α, bβ2α, � � � , bβnα are in I and form a Q-basis of

K. Indeed, for any a1, a2, � � � , an P Q, if

a1bβ1α � a2bβ2α � � � � � anbβnα � 0,

then since bα � 0 we have

a1β1 � a2β2 � � � � � anβn � 0,

which implies ai � 0 for each i. Hence bβ1α, bβ2α, � � � , bβnα are Q-independent and is a

Q-basis for K. �

In other words, the above proposition says we can find a Q-basis for K which entirely

consists of algebraic integers. There are in general many choices for the Q-basis of K in

OK , but the follow result shows that some of them are much preferred.

Proposition 7.9. Let I be a non-zero ideal of OK. Then we can find α1, α2, � � � , αn P I
such that they form a Q-basis for K, and for every element α in the field K, α P I iff

α � a1α1 � a2α2 � � � � � anαn for some a1, a2, � � � , an P Z.

Proof. By Lemma 7.8, I contains Q-bases for K. By Remark 7.4 and Proposition 7.5,

the discriminant of any such basis is a non-zero integer. Therefore we can always find a

Q-basis for OK in I such that |∆pα1, α2, � � � , αnq| minimal.
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It is clear that every integral linear combination of α1, α2, � � � , αn is in I since I is an ideal.

For the other direction, for any α P I, we can write α � γ1α1 � γ2α2 � � � � � γnαn with

γi P Q. We need to show that every γi P Z. If not, then some γi R Z and by relabeling if

necessary we can assume γ1 R Z. We write γ1 � m � θ where m P Z and 0   θ   1. Let

β1 � α�mα1, β2 � α2, � � � , βn � αn. Then β1, β2, � � � , βn P I and is a Q-basis of K. And

the transition matrix between the two basis is�
����
θ 0 � � � 0

γ2 1 � � � 0
...

...
. . .

...

γn 0 � � � 1

�
���.

By Proposition 7.6, we find ∆pβ1, β2, � � � , βnq � θ2∆pα1, α2, � � � , αnq, which contradicts

the minimality of |∆pα1, α2, � � � , αnq| since 0   θ   1. Therefore γi P Z for every i, which

means every element in I is an integral linear combination of α1, α2, � � � , αn. �

Remark 7.10. We make some comments.

(1) For α1, α2, � � � , αn satisfying the conditions in Proposition 7.9, we say they form an

integral basis for I. This is very useful in the sense that every element in K can be

uniquely written as a rational linear combination of them, and every element in I

can be uniquely written as an integral linear combination of them. We sometimes

write I � Zα1 ` Zα2 ` � � � ` Zαn to indicate the second condition.

(2) As a special case of Proposition 7.9, we think of OK as a non-zero ideal in itself.

Then there is a Q-basis of K, ω1, ω2, � � � , ωn, such that every element α P K

is a Q-linear combination of ω1, ω2, � � � , ωn, and α is an algebraic integer iff all

coefficients in this linear combination are in Z. As an example, if K is a quadratic

field, we can choose ω1 � 1 and ω2 � ω as in Proposition 7.2.

Proposition 7.9 shows the existence of an integral basis for I, but the integral basis for

I may not be unique. Although there could be many choices, they all have the same

discriminants. We look at the following result:

Lemma 7.11. Suppose tα1, α2, � � � , αnu and tβ1, β2, � � � , βnu are two integral bases for I.

Then ∆pα1, α2, � � � , αnq � ∆pβ1, β2, � � � , βnq.

Proof. We leave it as an exercise. See Exercise 7.2. �

By Lemma 7.11, the discriminant of an integral basis of an ideal I in OK is independent

of the choice of the integral basis. We have the following definition:
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Definition 7.12. For any non-zero ideal I in OK , the discriminant of any integral basis of

I is called the discriminant of the ideal I, written as ∆pIq. In particular, the discriminant

of OK is called the discriminant of the number field K, written as ∆pOKq, or simply ∆K .

Remark 7.13. By Remark 7.4 and Proposition 7.5, we know that ∆pIq (hence ∆K) is

always a non-zero integer.

The discriminant of a number field is an important quantity associated to a number field.

In the following example we give the values for quadratic fields. We need to remember

them because they will be used extensively later.

Proposition 7.14. Let d � 1 be a square-free integer and K � Qp?dq a quadratic field.

Then

∆K �
#

4d if d � 2 or 3 pmod 4q;
d if d � 1 pmod 4q.

Proof. We leave it as an exercise. See Exercise 7.3. �
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