
8. Unique Factorisation of Ideals

8.1. Finiteness of Quotient Rings. We will look at the norm of an ideal I in OK .

There are several descriptions of this notion. We will use the first description as the

definition and prove the other descriptions are all equivalent to this one.

Definition 8.1. Let K be a number field and OK its ring of integers. The norm of any

non-zero ideal I of OK is defined by

NpIq �
����∆pIq∆K

����
1
2

.

Remark 8.2. It is worth pointing out the following things about this notion.

(1) This definition is not to be confused with the norm of an element α in the number

field K; see Definition 6.14. Although they share the same terminology and nota-

tion, whether the argument is an element of an ideal should tell us which definition

is in use. On the other hand, the two notions do have very close relation. We will

explain that in Proposition 8.9.

(2) By Remark 7.13, we know that both ∆pIq and ∆K are non-zero, hence the norm

of the ideal I is always well-defined and a positive number. We will show that it

is in fact always a positive integer; see Proposition 8.3.

Proposition 8.3. Suppose ω1, ω2, � � � , ωn is an integral basis for OK and α1, α2, � � � , αn
is an integral basis for I. For each j, suppose αj �

°n
i�1 aijωi and M � paijq is the

transition matrix. Then NpIq � |detpMq|. In particular, NpIq is a positive integer.

Proof. Using Proposition 7.6, we have ∆pα1, α2, � � � , αnq � pdetpMqq2∆pω1, ω2, � � � , ωnq.
By Definition 7.12, this is equivalent to ∆pIq � pdetpMqq2∆K . By Remark 7.13, ∆pIq � 0

and ∆K � 0, hence we get |detpMq| �
���∆pIq

∆K

��� 12 � NpIq. Since ω1, ω2, � � � , ωn is an integral

basis for OK and each αj P OK , we know that the coefficients aij P Z. Therefore detpMq
is an integer. Since NpIq � 0, we conclude NpIq � |detpMq| is a positive integer. �

We give the third description of the norm of the ideal I. It also reveals a special property

of the ring OK , namely, the finiteness of quotient rings.

Proposition 8.4. For any non-zero ideal I of OK, the quotient ring OK{I is finite and

has order NpIq.

Proof. (This proof is not covered in lectures and is non-examinable.) Since I is an ideal

in OK , by forgetting the multiplication on them we know I is a subgroup of OK . By

Proposition 7.9, OK and I are both free abelian groups of rank n. By the structure
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theorem of finitely generated free abelian groups in group theory, we can find an integral

basis ω1, ω2, � � � , ωn for OK , such that d1ω1, d2ω2, � � � , dnωn is an integral basis for I, where

each di is a positive integer. We write d � d1d2 � � � dn.

We now show that the quotient ring OK{I is finite of order d. In other words, there are

precisely d cosets of I in OK . For this purpose, we will show that

S � tλ1ω1 � λ2ω2 � � � � � λnωn | 0 ¤ λi   di for i � 1, 2, � � � , nu
is a complete set of representatives for cosets of I in OK . On one hand, for each β P OK ,

let β � a1ω1 � a2ω2 � � � � � anωn for some a1, a2, � � � , an P Z. For each i, we can write

ai � qidi � ri for some 0 ¤ ri   di. Let γ � r1ω1 � r2ω2 � � � � rnωn, then β � γ �
q1d1ω1 � q2d2ω2 � � � � � qndnωn P I. Since γ P S, this shows every coset is represented

by some element in S. On the other hand, we need to show that elements in S represent

distinct cosets. Assume λ � λ1ω1�λ2ω2�� � ��λnωn P S and δ � δ1ω1�δ2ω2�� � ��δnωn P S
are in the same coset, then λ � δ P I, which implies di � λi � δi for each i. However we

also have �di   λi � δi   di, hence λi � δi � 0 for each i, which implies λ � δ. This

concludes S is a complete set of representatives for all cosets of I in OK , hence OK{I is

finite of order d � d1d2 � � � dn.

It remains to show that d � NpIq. We apply Proposition 8.3 for the particular bases

we chose at the beginning of the proof. Under these bases the matrix M is diagonal

with diagonal entries d1, d2, � � � , dn which are positive integers, hence NpIq � |detpMq| �
d1d2 � � � dn � d. It follows that the order of OK{I is NpIq. �

The following is an interesting consequence. NpIq P Z implies NpIq P OK . In fact, we

have

Corollary 8.5. For any non-zero ideal I in OK, NpIq P I.

Proof. Since 1 P OK , we consider the coset 1 � I. By Proposition 8.4, the sum of NpIq
copies of 1 � I is the zero element in OK{I; i.e. the coset NpIq � I is 0 � I. It follows

NpIq P I. �

Corollary 8.6. For any non-zero ideal I in OK, NpIq � 1 iff I � OK.

Proof. Both conditions NpIq � 1 and I � OK are equivalent to the condition that there

is only one coset of I in OK , hence they are equivalent. �

In other words, the norm of any other non-zero ideal is a positive integer larger than 1.

Remark 8.7. We have understood the norm of an ideal NpIq from three points of views:

in terms of discriminants (Definition 8.1); in terms of integral basis and transition matrix

(Proposition 8.3); in terms of the quotient ring (Proposition 8.4).
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The following consequence of Proposition 8.4 is called the ascending chain condition.

Recall that a similar result was required to show that every PID is a UFD.

Proposition 8.8 (Ascending Chain Condition). Let K be a number field. In the ring of

integers OK, every ascending chain of ideals I1 � I2 � I3 � � � � stabilises. In other words,

there is a positive integer N such that Im � Im�1 for all m ¥ N .

Proof. For each m P Z�, suppose dm � NpImq which is the order of OK{Im by Proposition

8.4. If Im � Im�1, then for any a P OK , we have a� Im � a� Im�1; i.e. every coset of Im
is contained in some coset of Im�1 while every coset of Im�1 contains more than one coset

of Im. It follows that dm ¥ dm�1 and the equality holds iff Im � Im�1. The increasing

chain of ideals gives d1 ¥ d2 ¥ d3 ¥ � � � . Since all dm’s are positive integers, there exists

some N ¡ 0 such that dm � dm�1 for m ¥ N , hence Im � Im�1 for every m ¥ N . �

To provide a convenient tool for computing the norm of a principal ideal, we will explain

the relation between the two norms: the norm of an element and the norm of an ideal.

If the ideal I � pαq is generated by a single element α, it is natural to expect that Npαq
and NpIq are closely related. It is true by the following result.

Proposition 8.9. Let I � pαq for some non-zero element α P OK. Then NpIq � |Npαq|.

Proof. We will follow the definitions to interpret the two norms by determinants of certain

matrices. We fix an integral basis ω1, ω2, � � � , ωn for OK . It is also a Q-basis for K. For

each j � 1, 2, � � � , n, write αωj �
°n
i�1 aijωi, then the linear transformation Lα under this

basis is given by the matrix M � paijq. Hence Npαq � detpMq.
To compute NpIq, we first need to write down an integral basis for I. By Exercise 7.4,

we know that αω1, αω2, � � � , αωn is such an integral basis. Using this integral basis, we

apply Proposition 8.3 and get that NpIq � |detpMq|. It follows that NpIq � |Npαq|. �
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