
8.2. Unique factorisation of ideals. We review operations of ideals from Algebra 2B.

Let R be a commutative ring with identity 1. Let I and J be ideals of R, then the sum

of I and J is define to be

I � J � ta� b P R | a P I, b P Ju,
and the product of I and J is defined to be

IJ �
#

ķ

i�1

aibi P R | k P Z�, ai P I, bi P J for all 1 ¤ i ¤ k

+
.

The sum I � J and product IJ are both ideals of R. This fact is Lemma 2.4 (2013) or

Lemma 2.20 (2014) in Algebra 2B.

In particular, for any α P R and ideal I, we can easily verify that pαqI � tαa | a P Iu.
It is easy to check that under the assumption that R is commutative, both operations are

commutative and associative. Namely, for ideals I and J of R, we have I � J � J � I

and IJ � JI; for ideals I1, I2 and I3 of R, we have pI1 � I2q � I3 � I1 � pI2 � I3q and

pI1I2qI3 � I1pI2I3q. Therefore, we can simply write I1�I2�I3 or I1I2I3 without specifying

the order of the operations.

The building blocks in the factorisation of integers are prime numbers. To study factori-

sation of ideals, we also need to understand the building blocks first.

Definition 8.10. Let R be a commutative ring with 1. An ideal I of R is a proper ideal

if I � R. An ideal p of R is a prime ideal if p is proper, and ab P p implies a P p or b P p.

An ideal m of R is a maximal ideal if m is proper, and there is no ideal I strictly between

m and R; i.e. m � I � R implies I � m or I � R.

Example 8.11. Let R � Z. p6q is not a prime ideal because 2 � 3 P p6q but 2 R p6q and

3 R p6q. It is not a maximal idea because p6q � p2q � Z. But p2q is a prime ideal, because

if ab P p2q, then ab is even, hence either a or b is even. p2q is also a maximal ideal because

any ideal of Z has the form pdq. If p2q � pdq � Z, then d � 2, hence pdq � p1q or p2q.

The notions of prime ideals and maximal ideals lie in the heart of the study of algebraic

number theory and algebraic geometry. In general they are distinct notions, but in the

context of number fields, we have the following nice agreement.

Proposition 8.12. Let K be a number field, OK its ring of integers, and I a non-zero

ideal in OK. Then I is a prime ideal iff I is a maximal ideal.

Sketch of Proof. This is a standard fact in commutative ring theory. For any commutative

ring R with 1, one can prove that I is a prime ideal iff R{I is an integral domain, and

I is a maximal ideal iff R{I is a field. A field is always an integral domain, hence a
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maximal ideal is a prime ideal. This direction holds for any R. The other direction

requires R � OK . But by Proposition 8.4, OK{I is a finite commutative integral domain,

hence a field. This shows a non-zero prime ideal is also a maximal ideal. �

We study the unique factorisation of ideals in the ring of integers OK of a number field

K and its consequences.

Proposition 8.13. Let I be a non-zero ideal in OK. Then there exists an ideal J such

that IJ is a non-zero principal ideal.

Proof. This proof is omitted and non-examinable due to the limitation of time. It is

technical but does not use anything beyond what have learned so far. �

We have the following two useful consequences. The first one is the cancellation law for

ideals in OK . The second one can be phrased as “to contain is to divide”.

Corollary 8.14. Let I, J1, J2 be ideals in OK, I � 0. If IJ1 � IJ2, then J1 � J2.

Corollary 8.15. Let I1, I2 be ideals in OK. If I1 � I2, then there exists an ideal J in

OK, such that I1 � I2J .

Proof of Corollaries 8.14 and 8.15. Both statements are simple consequences of Proposi-

tion 8.13. We leave them as exercises. See Exercise 8.4. �

Now we are ready to establish the unique factorisation for ideals in OK .

Theorem 8.16 (Unique Factorisation of Ideals in OK). Let K be a number field and OK

its ring of integers. Then every non-zero proper ideal in OK can be uniquely written as a

finite product of prime ideals up to reordering factors.

Proof. The proof consists of two parts: existence and uniqueness of prime factorisations.

First we prove the existence. Let I be a non-zero proper ideal of OK . We claim that I is

contained in some maximal ideal P1. If I is not contained in any maximal ideal of OK , then

in particular, I itself is not maximal. Hence there is an ideal I1 with I � I1 � OK . Since

I1 is not maximal, we can find I2 with I1 � I2 � OK . The same procedure can be repeated

to obtain a strictly increasing chain of infinitely many ideals I � I1 � I2 � I3 � � � � ,
which contradicts Proposition 8.8.

By Corollary 8.15, we have I � P1J1 for some ideal J1. It is clear that I � J1. We claim

I � J1. Indeed, if I � J1, then by Corollary 8.14, we have OK � P1, which contradicts

the properness of P1.
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If J1 � OK , then the same argument shows that J1 � P2J2 for some maximal ideal P2 and

some ideal J2 strictly larger than J1. If J2 � OK then we can continue the process to get P3

and J3. We claim that we can get Jr � OK for some r. If not, this process goes on forever

and we get a strictly increasing chain of infinitely many ideals I � J1 � J2 � J3 � � � � ,
which contradicts Proposition 8.8.

Assume Jl � OK , then the process terminates here and we get

I � P1J1 � P1P2J2 � P1P2P3J3 � � � � � P1P2 � � �PrJr � P1P2 � � �Pr,
where each Pi is a maximal ideal, hence is also a prime ideal by Proposition 8.12.

Then we prove the uniqueness. Suppose P1P2 � � �Pr � I � Q1Q2 � � �Qs where Pi’s and

Qj’s are prime ideals. Then P1 � Q1Q2 � � �Qs. We claim that P1 � Qj for some Qj. If

not, then for each j � 1, 2, � � � , s, we can find aj P QjzP1. Since P1 is a prime ideal,

a1a2 � � � as R P1. However a1a2 � � � as P Q1Q2 � � �Qs � P1. Contradiction.

Therefore, by renumbering the Qj’s if necessary, we can assume that P1 � Q1. Since Q1

is a maximal ideal by Proposition 8.12, we conclude that P1 � Q1.

Using Corollary 8.14 we obtain P2 � � �Pr � Q2 � � �Qs. Continuing in the same way we

eventually find that r � s and Pi � Qi for all i after renumbering. �
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