8.2. Unique factorisation of ideals. We review operations of ideals from Algebra 2B.

Let R be a commutative ring with identity 1 . Let I and J be ideals of R, then the sum of I and J is define to be

$$
I+J=\{a+b \in R \mid a \in I, b \in J\}
$$

and the product of I and J is defined to be

$$
I J=\left\{\sum_{i=1}^{k} a_{i} b_{i} \in R \mid k \in \mathbb{Z}^{+}, a_{i} \in I, b_{i} \in J \text { for all } 1 \leqslant i \leqslant k\right\} .
$$

The sum $I+J$ and product $I J$ are both ideals of R. This fact is Lemma 2.4 (2013) or Lemma 2.20 (2014) in Algebra 2B.

In particular, for any $\alpha \in R$ and ideal I, we can easily verify that $(\alpha) I=\{\alpha a \mid a \in I\}$.
It is easy to check that under the assumption that R is commutative, both operations are commutative and associative. Namely, for ideals I and J of R, we have $I+J=J+I$ and $I J=J I$; for ideals I_{1}, I_{2} and I_{3} of R, we have $\left(I_{1}+I_{2}\right)+I_{3}=I_{1}+\left(I_{2}+I_{3}\right)$ and $\left(I_{1} I_{2}\right) I_{3}=I_{1}\left(I_{2} I_{3}\right)$. Therefore, we can simply write $I_{1}+I_{2}+I_{3}$ or $I_{1} I_{2} I_{3}$ without specifying the order of the operations.

The building blocks in the factorisation of integers are prime numbers. To study factorisation of ideals, we also need to understand the building blocks first.

Definition 8.10. Let R be a commutative ring with 1 . An ideal I of R is a proper ideal if $I \neq R$. An ideal \mathfrak{p} of R is a prime ideal if \mathfrak{p} is proper, and $a b \in \mathfrak{p}$ implies $a \in \mathfrak{p}$ or $b \in \mathfrak{p}$. An ideal \mathfrak{m} of R is a maximal ideal if \mathfrak{m} is proper, and there is no ideal I strictly between \mathfrak{m} and R; i.e. $\mathfrak{m} \subseteq I \subseteq R$ implies $I=\mathfrak{m}$ or $I=R$.

Example 8.11. Let $R=\mathbb{Z}$. (6) is not a prime ideal because $2 \cdot 3 \in(6)$ but $2 \notin(6)$ and $3 \notin(6)$. It is not a maximal idea because $(6) \subsetneq(2) \subsetneq \mathbb{Z}$. But (2) is a prime ideal, because if $a b \in(2)$, then $a b$ is even, hence either a or b is even. (2) is also a maximal ideal because any ideal of \mathbb{Z} has the form (d). If $(2) \subseteq(d) \subseteq \mathbb{Z}$, then $d \mid 2$, hence $(d)=(1)$ or (2).

The notions of prime ideals and maximal ideals lie in the heart of the study of algebraic number theory and algebraic geometry. In general they are distinct notions, but in the context of number fields, we have the following nice agreement.

Proposition 8.12. Let K be a number field, \mathcal{O}_{K} its ring of integers, and I a non-zero ideal in \mathcal{O}_{K}. Then I is a prime ideal iff I is a maximal ideal.

Sketch of Proof. This is a standard fact in commutative ring theory. For any commutative ring R with 1 , one can prove that I is a prime ideal iff R / I is an integral domain, and I is a maximal ideal iff R / I is a field. A field is always an integral domain, hence a
maximal ideal is a prime ideal. This direction holds for any R. The other direction requires $R=\mathcal{O}_{K}$. But by Proposition 8.4, \mathcal{O}_{K} / I is a finite commutative integral domain, hence a field. This shows a non-zero prime ideal is also a maximal ideal.

We study the unique factorisation of ideals in the ring of integers \mathcal{O}_{K} of a number field K and its consequences.

Proposition 8.13. Let I be a non-zero ideal in \mathcal{O}_{K}. Then there exists an ideal J such that $I J$ is a non-zero principal ideal.

Proof. This proof is omitted and non-examinable due to the limitation of time. It is technical but does not use anything beyond what have learned so far.

We have the following two useful consequences. The first one is the cancellation law for ideals in \mathcal{O}_{K}. The second one can be phrased as "to contain is to divide".

Corollary 8.14. Let I, J_{1}, J_{2} be ideals in $\mathcal{O}_{K}, I \neq 0$. If $I J_{1}=I J_{2}$, then $J_{1}=J_{2}$.
Corollary 8.15. Let I_{1}, I_{2} be ideals in \mathcal{O}_{K}. If $I_{1} \subseteq I_{2}$, then there exists an ideal J in \mathcal{O}_{K}, such that $I_{1}=I_{2} J$.

Proof of Corollaries 8.14 and 8.15. Both statements are simple consequences of Proposition 8.13. We leave them as exercises. See Exercise 8.4.

Now we are ready to establish the unique factorisation for ideals in \mathcal{O}_{K}.
Theorem 8.16 (Unique Factorisation of Ideals in \mathcal{O}_{K}). Let K be a number field and \mathcal{O}_{K} its ring of integers. Then every non-zero proper ideal in \mathcal{O}_{K} can be uniquely written as a finite product of prime ideals up to reordering factors.

Proof. The proof consists of two parts: existence and uniqueness of prime factorisations.
First we prove the existence. Let I be a non-zero proper ideal of \mathcal{O}_{K}. We claim that I is contained in some maximal ideal P_{1}. If I is not contained in any maximal ideal of \mathcal{O}_{K}, then in particular, I itself is not maximal. Hence there is an ideal I_{1} with $I \subsetneq I_{1} \subsetneq \mathcal{O}_{K}$. Since I_{1} is not maximal, we can find I_{2} with $I_{1} \subsetneq I_{2} \subsetneq \mathcal{O}_{K}$. The same procedure can be repeated to obtain a strictly increasing chain of infinitely many ideals $I \subsetneq I_{1} \subsetneq I_{2} \subsetneq I_{3} \subsetneq \cdots$, which contradicts Proposition 8.8.

By Corollary 8.15, we have $I=P_{1} J_{1}$ for some ideal J_{1}. It is clear that $I \subseteq J_{1}$. We claim $I \neq J_{1}$. Indeed, if $I=J_{1}$, then by Corollary 8.14, we have $\mathcal{O}_{K}=P_{1}$, which contradicts the properness of P_{1}.

If $J_{1} \neq \mathcal{O}_{K}$, then the same argument shows that $J_{1}=P_{2} J_{2}$ for some maximal ideal P_{2} and some ideal J_{2} strictly larger than J_{1}. If $J_{2} \neq \mathcal{O}_{K}$ then we can continue the process to get P_{3} and J_{3}. We claim that we can get $J_{r}=\mathcal{O}_{K}$ for some r. If not, this process goes on forever and we get a strictly increasing chain of infinitely many ideals $I \subsetneq J_{1} \subsetneq J_{2} \subsetneq J_{3} \subsetneq \cdots$, which contradicts Proposition 8.8.

Assume $J_{l}=\mathcal{O}_{K}$, then the process terminates here and we get

$$
I=P_{1} J_{1}=P_{1} P_{2} J_{2}=P_{1} P_{2} P_{3} J_{3}=\cdots=P_{1} P_{2} \cdots P_{r} J_{r}=P_{1} P_{2} \cdots P_{r}
$$

where each P_{i} is a maximal ideal, hence is also a prime ideal by Proposition 8.12.
Then we prove the uniqueness. Suppose $P_{1} P_{2} \cdots P_{r}=I=Q_{1} Q_{2} \cdots Q_{s}$ where P_{i} 's and Q_{j} 's are prime ideals. Then $P_{1} \supseteq Q_{1} Q_{2} \cdots Q_{s}$. We claim that $P_{1} \supseteq Q_{j}$ for some Q_{j}. If not, then for each $j=1,2, \cdots, s$, we can find $a_{j} \in Q_{j} \backslash P_{1}$. Since P_{1} is a prime ideal, $a_{1} a_{2} \cdots a_{s} \notin P_{1}$. However $a_{1} a_{2} \cdots a_{s} \in Q_{1} Q_{2} \cdots Q_{s} \subseteq P_{1}$. Contradiction.

Therefore, by renumbering the Q_{j} 's if necessary, we can assume that $P_{1} \supseteq Q_{1}$. Since Q_{1} is a maximal ideal by Proposition 8.12, we conclude that $P_{1}=Q_{1}$.

Using Corollary 8.14 we obtain $P_{2} \cdots P_{r}=Q_{2} \cdots Q_{s}$. Continuing in the same way we eventually find that $r=s$ and $P_{i}=Q_{i}$ for all i after renumbering.

