
9. The Ideal Class Group and Minkowski’s Theorem

We introduce the notions of the ideal class group and the class number, and prove

Minkowski’s Theorem, which will be used later to compute class numbers explicitly.

9.1. The ideal class group. We show some important applications of the theorem of

unique factorisation of ideals. The following definition plays a major role in algebraic

number theory.

Definition 9.1. Let K be a number field and OK its ring of integers. Two non-zero

ideals I, J in OK are said to be equivalent, I � J , if there exist non-zero α, β P OK , such

that pαqI � pβqJ . This is an equivalence relation. Each equivalence class is called an

ideal class.

We leave it in Exercise 9.3 to verify that I � J is an equivalence relation.

Theorem 9.2. For any number field K, the set of ideal classes in OK form an abelian

group.

Proof. For any non-zero ideal I of OK , let I denote the ideal class containing I. For two

ideals I and J of OK , we define the product of the ideal classes I and J to be the ideal

class IJ . The product is closed since IJ is an ideal. We need to check the product is

well-defined; that is, the product of two ideal classes does not depend on the choice of

the ideals in the two classes. This is Exercise 9.3. The commutativity and associativity

follow from those of multiplications of ideals. The ideal class containing OK serves as the

identity for the multiplication. For any non-zero ideal I of OK , by Proposition 8.13 there

exists some ideal J in OK such that IJ is a non-zero principle ideal, hence the inverse of

I is given by J . Therefore the ideal classes form an abelian group. �

Based on the above theorem, we make the following definitions.

Definition 9.3. Let K be a number field and OK its ring of integers. The group of ideal

classes in OK under multiplication is called the ideal class group of K. The order of the

ideal class group is called the class number of K, denoted by hK .

Remark 9.4. It can be proved that there are only finitely many ideal classes for every

number field, hence the class number is always finite. However, we will only prove the

finiteness for quadratic fields. And we will also show how to compute the class number

in some explicit examples.

In some sense, the class number measures how far OK is from being a PID.
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Proposition 9.5. Let K be a number field and OK its ring of integers. Then hK � 1 iff

OK is a PID.

Proof. It is clear that that hK � 1 iff every non-zero ideal I is equivalent to OK , and OK

is a PID iff every non-zero ideal is principal. Therefore it suffices to show that, for any

non-zero ideal I, we have I � OK iff I is principal.

For one direction, assume that I is a principal ideal pαq. Then we have p1qI � pαqOK ,

hence I � OK .

For the other direction, assume that I � OK . Then there are non-zero α, β P OK , such

that pαqI � pβqOK � pβq. From β P pαqI we know β � αγ for some γ P I. We claim

I � pγq. It is clear that I � pγq since γ P I. For any a P I, αa P pβq hence αa � βb for

some b P OK . Therefore a � γb P pγq, from which we conclude I � pγq. �

In this proof we have actually showed

Corollary 9.6. Let I be a non-zero ideal in OK, then I � OK iff I is a principal ideal.

Proof. The proof is already contained in that of Proposition 9.5. �

Corollary 9.7. Let K be a number field and OK its ring of integers. If hK � 1, then OK

is a UFD.

Proof. This is an immediate consequence of Proposition 9.5 and Theorem 1.11. �

Example 9.8. If K � Qris, then OK � Zris by Proposition 7.2. From Exercise 1.4 we

know Zris is a Euclidean domain, hence a PID and UFD. Then we know the class number

of K � Qris is 1. In many other examples, the opposite direction could be more useful: if

we can show the class number hK � 1, then OK is a UFD. Hence it is important to find

a systematic way to compute class numbers. We will see it later.

Our next goal is to prove Minkowski’s Theorem, which is the main tool for computing

class numbers. We need to introduce some terminologies before stating the theorem.For

the moment we forget number theory and think about some geometry.

Definition 9.9. Let e1, e2 be two linearly independent vectors in R2. The abelian group

L � tm1e1�m2e2 | m1,m2 P Zu is called a lattice of rank 2 in R2. The set te1, e2u is called

a generator of L. The fundamental domain of L with respect to the generator te1, e2u is

the set T � ta1e1 � a2e2 | a1, a2 P R, 0 ¤ a1   1, 0 ¤ a2   1u.

Using the standard metric on R2, we can define the volume (or area) of a measurable

subset X � R2 in the usual way, more precisely by

»
X

dxdy, denoted by volpXq. However
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the only examples that we are interested in are the volumes of rectangles, disks, and

parallelograms, which are familiar. For instance, let ei � pxi, yiq for i � 1, 2, then the

volumn of the fundamental domain of the lattice L is given by

volpT q �
����� det

�
x1 x2

y1 y2

� ����� .
Definition 9.10. A subset X � R2 is convex if, whenever p, q P X, the point λp � p1 �
λqq P X for all real λ, 0 ¤ λ ¤ 1. A subset X � R2 is centrally symmetric if p P X
implies �p P X.

In other words, if X is convex, then the straight line segment joining two points in X

completely lies in X. For example a disk, a square, a triangle is convex, but an annulus

is not. A disk is centrally symmetric only when its centre is at p0, 0q.
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