
9.2. Minkowski’s theorem. From now on we will focus on quadratic fields Qp?dq for

any square-free integer d and prove their class numbers are finite; see Example 6.12 (1).

Now we state the famous Minkowski’s Theorem in dimension 2, which is the main tool in

studying this problem.

Theorem 9.11 (Minkowski’s Theorem). Let L be a lattice of rank 2 in R2 with fundamen-

tal domain T . Let X be a centrally symmetric convex subset of R2. If volpXq ¡ 4 volpT q,
then X contains a non-zero point of L.

Proof. We first shrink X to half of its size in length; precisely speaking, we consider

Y � tp P R2 | 2p P Xu. Then volpY q � 1
4

volpXq ¡ volpT q.
For every h P L, we define h � T � th � p | p P T u which is the transport of the

fundamental domain along the vector h. It is clear that R2 becomes the disjoint union of

these parallelograms. Let Yh � Y Xph�T q is the part of Y which lies in the parallelogram

h�T for each h P L, then Y becomes the disjoint union of all Yh’s, hence
°
hPL volpYhq �

volpY q ¡ volpT q. We transport each Yh back to the fundamental domain, say Y 1
h � tq P

T | h � q P Yhu. Then
°
hPL volpY 1

hq �
°
hPL volpYhq ¡ volpT q. Since each Y 1

h � T ,

this inequality implies they are not disjoint. Therefore there exist h1, h2 P L, h1 � h2,

such that we can find some q P Y 1
h1
X Y 1

h2
. That implies p1 � h1 � q P Yh1 � Y and

p2 � h2 � q P Yh2 � Y , hence we found p1, p2 P Y , such that p1 � p2 � h1 � h2 P L.

Since p1, p2 P Y , we have 2p1, 2p2 P X. Since X is centrally symmetric, �2p2 P X. Since

X is convex, 1
2
p2p1q � 1

2
p�2p2q P X. And 1

2
p2p1q � 1

2
p�2p2q � h1 � h2 is a non-zero point

in L. �

Corollary 9.12. Let L be a lattice of rank 2 in R2 with fundamental domain T . Let X

be a centrally symmetric convex subset of R2. If X is compact (i.e. closed and bounded),

and volpXq ¥ 4 volpT q, then X contains a non-zero point of L.

Proof. We do not prove this corollary rigorously because it requires some understanding

of topology. Intuitively, we can enlarge X a little bit so that we can apply Theorem 9.11

and obtain lattice points in the enlarged X. Since this enlargement can be arbitrarily

tiny, there must be lattice points within the boundary of X. �

As an indication on how geometry can be used to study number fields, we construct lattices

from some familiar objects. Here we consider a quadratic number field K � Qp?dq for

any square-free integer d. As usual, its ring of integers is denoted by OK and let I be any

non-zero ideal of OK .

Proposition 9.13. Let d   0 be a square-free integer and K � Qp?dq a quadratic field.

For any non-zero ideal I in OK, the set LI � tpReα, Imαq P R2 | α P Iu is a lattice of

rank 2 in R2. Let TI be the fundamental domain of LI , then volpTIq � 1
2
NpIq |∆K |

1
2 .
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Proof. This proposition can be proved in three steps.

Step 1. We prove that LI is a lattice of rank 2 in R2. By Proposition 7.9, assume

α1, α2 is an integral basis for I, then we can write I � tm1α1 � m2α2 | m1,m2 P Zu.
Let e1 � pReα1, Imα1q and e2 � pReα2, Imα2q, then for every α � m1α1 � m2α2 P I,

pReα, Imαq � m1pReα1, Imα1q �m2pReα2, Imα2q � m1e1 �m2e2. Hence LI � tm1e1 �
m2e2 | m1,m2 P Zu is a rank 2 lattice in R2.

Step 2. We calculate the volume of the fundamental domain in a special case, i.e. TOK
.

By Proposition 7.2, we can write OK � tm1ω1 �m2ω2 | m1,m2 P Zu, where ω1 � 1, and

ω2 �
?
d if d � 2 or 3 pmod 4q and 1

2
p1�?

dq if d � 1 pmod 4q.
When d � 2 or 3 pmod 4q, we have e1 � pReω1, Imω1q � p1, 0q and e2 � pReω2, Imω2q �
p0,?�dq. Hence the volume of the fundamental domain is

volpTOK
q �

����� det

�
1 0

0
?�d

� ����� �
?
�d � 1

2
|∆K |

1
2 ,

where the last equality follows from Proposition 7.14.

When d � 1 pmod 4q, we have e1 � pReω1, Imω1q � p1, 0q and e2 � pReω2, Imω2q �
p1

2
, 1

2

?�dq. Hence the volume of the fundamental domain is

volpTOK
q �

����� det

�
1 1

2

0 1
2

?�d

� ����� � 1

2

?
�d � 1

2
|∆K |

1
2 ,

where the last equality still follows from Proposition 7.14.

Step 3. We calculate the volume of the fundamental domain TI in general. For an

arbitrary ideal I with an integral basis α1, α2, we can write α1 � a11ω1 � a21ω2 and

α2 � a12ω1 � a22ω2, as well as the transition matrix M � paijq, where aij P Z. By taking

real parts and imaginary parts of α1 and α2, we realise that they can be organised into

the following matrix�
Reα1 Reα2

Imα1 Imα2

�
�
�
a11 a12

a21 a22

��
Reω1 Reω2

Imω1 Imω2

�
.

Taking determinants and absolute values on both sides, we get

volpTIq � |detM | volpTOK
q.

By Proposition 8.3 and step 2, we conclude that

volpTIq � 1

2
NpIq |∆K |

1
2

as required. �

A parallel statement can be established as follows
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Proposition 9.14. Let d ¡ 1 be square-free and K � Qp?dq a quadratic field. For any

non-zero ideal I of OK, the set LI �
 pa� b

?
d, a� b

?
dq P R2 | a� b

?
d P I, a, b P Q

(
is a lattice of rank 2 in R2. Let TI be the fundamental domain of LI , then volpTIq �
NpIq |∆K |

1
2 .

Proof. We leave it as an exercise. See Exercise 9.4. �
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