
10. Computation of Class Numbers

We will establish the Minkowski bound for class numbers, and show how to use it to make

explicit computations in examples.

10.1. Minkowski bound. We will show an upper bound for class numbers due to Minkowski.

The formula is still a little different for real quadratic fields and imaginary quadratic fields.

Proposition 10.1. Let K � Qp?dq be a quadratic field with d   0. For any non-zero

ideal I of OK, there exists a non-zero element α P I such that |Npαq| ¤ 2
π
NpIq |∆K |

1
2 .

Proof. By Proposition 9.13, we know that LI is a rank 2 lattice in R2 with the volume of

the fundamental domain volpTIq � 1
2
NpIq |∆K |

1
2 .

Now we consider the closed disk D with centre p0, 0q and radius r �
�

2
π
NpIq |∆K |

1
2

	 1
2
.

D is centrally symmetric, convex, compact, with volume volpDq � πr2 � 2NpIq |∆K |
1
2 �

4 volpTIq. By Corollary 9.12, D contains non-zero lattice point in LI . In other words, there

exists some α P I, such that the point pReα, Imαq P D. Hence pReαq2 � pImαq2 ¤ r2.

If we write α � a � b
?
d, then Reα � a and Imα � b

?�d, hence pReαq2 � pImαq2 �
a2 � b2d � Npαq by Example 6.18. In particular, Npαq ¥ 0. It follows that |Npαq| �
Npαq ¤ r2 � 2

π
NpIq |∆K |

1
2 . �

To prove next result we need the following lemma

Lemma 10.2. For any numeber field K, let I and J be non-zero ideals in OK. Then

NpIJq � NpIqNpJq.

Proof. The proof is omitted and non-examinable. It is a consequence of Theorem 8.16. �

Proposition 10.3. Let K � Qp?dq be a quadratic field with d   0. Then every ideal

class C of OK contains an ideal I with NpIq ¤ 2
π
|∆K |

1
2 .

Proof. By Theorem 9.2, the ideal class C has an inverse in the ideal class group. We

denote this inverse ideal class by J where J is any representative. Then by Proposition

10.1, there exists a non-zero element β P J such that |Npβq| ¤ 2
π
NpJq |∆K |

1
2 . Since we

have pβq � J , there exists some ideal I such that IJ � pβq by Corollary 8.15. Since the

ideal class containing pβq is the identity element in the ideal class group, I and J are

inverse of each other, hence I is an ideal in C. It remains to show NpIq satisfies the given

bound.
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By Lemma 10.2 and Proposition 8.9, we have the following calculation

NpIqNpJq � NpIJq � Nppβqq � |Npβq| ¤ 2

π
NpJq |∆K |

1
2 .

Since NpJq is a positive integer by Proposition 8.3, we cancel it to get NpIq ¤ 2
π
|∆K |

1
2

as required. �

We can get the following parallel results for real quadratic fields. We leave the proofs as

exercises.

Proposition 10.4. Let K � Qp?dq be a quadratic field with d ¡ 0. For any ideal I of

OK, there exists a non-zero element α P I such that |Npαq| ¤ 1
2
NpIq |∆K |

1
2 .

Proof. The proof is similar to that of Proposition 10.1. See Exercise 10.3. �

Proposition 10.5. Let K � Qp?dq be a quadratic field with d ¡ 0. Then every ideal

class C of OK contains an ideal I with NpIq ¤ 1
2
|∆K |

1
2 .

Proof. The proof is similar to that of Proposition 10.3. See Exercise 10.3. �

Summarising the above results, we get the following definition:

Definition 10.6. Let d be a square-free integer, d � 1, and K � Qp?dq a quadratic field.

The Minkowski bound MK is defined by

MK �
#

2
π
|∆K |

1
2 if d   0,

1
2
|∆K |

1
2 if d ¡ 0,

with the property that every ideal class in OK contains an ideal whose norm is at most

MK .

This allows us to prove the following important result:

Theorem 10.7. Let d be a square-free integer, d � 1, and K � Qp?dq a quadratic field.

The class number hK is finite.

Proof. By Definition 10.6, every ideal class contains an ideal with norm not larger than

MK . Hence it remains to show there are only finitely many ideals with norm not larger

than MK . By Proposition 8.3, every such norm is a positive integer not larger than MK ,

hence there are only finitely many choices for such norms. It suffices to show that for

every fixed positive integer q ¤MK , there are only finitely many ideals I with NpIq � q.

By Corollary 8.5, we know q P I, hence pqq � I. By Corollary 8.15, we can find some

ideal J such that pqq � IJ . By Theorem 8.16, the ideal pqq has a unique factorisation
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into finitely many prime ideals, say pqq � P1P2 � � �Pr. Since I is a factor of pqq, it must

be the product of some prime ideals in the factorisation of pqq, hence there are at most

finitely many choices for such I. This completes the proof. �

Remark 10.8. This proof not only shows the finiteness of class numbers, but also provide

a recipe for computation. Namely, we can factor all ideals pqq for positive integers q ¤MK

to find all ideals with norm q. Then every ideal class is representated by some of these

ideals. By eliminating repeated ideal classes and analysing the multiplicative structure,

we should in principle understand the ideal class group.

We give one simple example as follows:

Example 10.9. Consider the quadratic field Qpiq. By Proposition 7.2, we know its ring

of integers is OK � Zris. Since d � �1, we have ∆K � �4 by Proposition 7.14. The

Minkowski bound for this field is MK � 4
π
  2. Therefore every ideal class contains

an ideal I of norm NpIq � 1. By Corollary 8.6, the only possibility is I � OK . So

there is only one ideal class, and hK � 1. By Proposition 9.5 and Corollary 9.7, the ring

OK � Zris is a PID and UFD. This is consistent with the result in Exercise 1.4. The

same argument works for every quadratic field K with MK   2.
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