
10.2. Computing class numbers. We compute class numbers for quadratic fields in

some concrete examples.

In Example 10.9, we have seen that, if the Minkowski bound is smaller than 2, then the

class number hK � 1 and the class group is a trivial group. In general, we need to use

the strategy mentioned in Remark 10.8. More precisely, we need to first factor ideals of

the form pqq for all positive integers q ¤MK to find all ideals of norm q, then analyse the

relation among these ideals.

There is, in fact, a systematic way to factor any ideal of the form ppq for any prime p in

OK when K is a quadratic field.

Proposition 10.10. Let d � 1 be a square-free integer and K � Qp?dq. Then we can

factor p2q into prime ideals as follows

(1) If d � 1 pmod 4q, then p2q � p2 for some prime ideal p, which is the only ideal of

norm 2;

(2) If d � 1 pmod 8q, then p2q � p1p2 for distinct prime ideals p1 and p2, which are

the only ideals of norm 2;

(3) If d � 5 pmod 8q, then p2q is a prime ideal itself, and there is no ideal of norm 2.

Proposition 10.11. Let d � 1 be a square-free integer and K � Qp?dq. For any odd

prime p, we can factor ppq into prime ideals as follows

(1) If p � d, then ppq � p2 for some prime ideal p, which is the only ideal of norm p;

(2) If p d
p
q � 1, then ppq � p1p2 for distinct prime ideals p1 and p2, which are the only

ideals of norm p;

(3) If p d
p
q � �1, then ppq is a prime ideal itself, and there is no ideal of norm p.

Proof of Propositions 10.10 and 10.11. In both propositions, we can in fact write down

the prime ideals in the factorisations explicitly. Parts (1) and (2) can be proved by

verifying the mutual inclusions of the two sides of the equations. Part (3) can be proved

by showing the quotient ring is a field (hence an integral domain). The details of the

proofs are omitted due to limitation of time. This proof is non-examinable. �

If we want to factor pqq for some composite q, we can factor q into primes in Z, say

q � p1p2 � � � pr, then write pqq � pp1qpp2q � � � pprq and factor each ppiq using Propositions

10.10 and 10.11.

The following examples show how to compute class numbers using the general strategy

mentioned above.
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Example 10.12. Let K � Qp?�19q. We want to compute hK . Since d � �19, we have

∆K � �19 by Proposition 7.14. The Minkowski bound for this field is MK � 2
?

19
π

  3.

By Definition 10.6, every ideal class contains an ideal of norm at most 2. By Corollary

8.6, an ideal of norm 1 must be OK . Since d � �19 � 5 pmod 8q, by Proposition 10.10,

there is no ideal of norm 2. We conclude that hK � 1. By Proposition 9.5 and Corollary

9.7, the ring OK is a PID and UFD when K � Qp?�19q.

Example 10.13. Let K � Qp?�5q. We want to compute hK . Since d � �5, we have

∆K � �20 by Proposition 7.14. The Minkowski bound for this field is MK � 2
?

20
π

  3.

By Definition 10.6, every ideal class contains an ideal of norm at most 2. By Corollary

8.6, an ideal of norm 1 must be OK . Since d � �5 � 1 pmod 4q, by Proposition 10.10,

p2q � p for some prime ideal p which is the only ideal of norm 2. Therefore there are at

most 2 ideal classes, represented by OK and p. We still need to know whether they are

the same ideal class or distinct ideal classes.

Assume OK and p are in the same ideal class, then p is a principal ideal. Say, p � pαq
for some α P OK . By Proposition 7.2, we can write α � a� b

?�5 for some a, b P Z. By

Proposition 8.9, we know that |Npαq| � Nppαqq � 2, hence Npαq � �2. By Example

6.18, we know that Npαq � a2 � 5b2. Therefore we have a2 � 5b2 � �2 for some a, b P Z.

This equation has no integer solutions. Contradiction. It follows that p cannot be a

principal ideal. By Corollary 9.6, p and OK are in different ideal classes, hence OK does

have two distinct ideal classes. We conclude that hK � 2 for K � Qp?�5q.

Example 10.14. Let K � Qp?10q. We want to compute hK . Since d � 10, we have

∆K � 40 by Proposition 7.14. The Minkowski bound for this field is MK �
?

40
2

  4.

By Definition 10.6, every ideal class contains an ideal of norm at most 3. By Corollary

8.6, an ideal of norm 1 must be OK . Since d � 10 � 1 pmod 4q, by Proposition 10.10,

p2q � p2
0 for some prime ideal p which is the only ideal of norm 2. Since p 10

3
q � p 1

3
q � 1,

by Proposition 10.11, p3q � p1p2 for prime ideals p1 and p2 which are the only ideals of

norm 3. Therefore we have at most 4 ideal classes, represented by OK , p0, p1 and p2.

However, some of them might be in the same ideal class. So we still need to understand

their relations.

We first show that p0 is not a principal ideal, thus OK and p0 are in two different ideal

classes. If p0 � pαq for some α P OK . By Proposition 7.2, we can write α � a� b
?

10 for

some a, b P Z. By Proposition 8.9, we know that |Npαq| � Nppαqq � 2, hence Npαq � �2.

By Example 6.18, we know that Npαq � a2 � 10b2. Therefore we have a2 � 10b2 � �2

for some a, b P Z. This would imply a2 � �2 pmod 5q, hence either 2 or �2 must be a

quadratic residue modulo 5. However, p 2
5
q � p �2

5
q � �1. Contradiction. It follows that

p0 cannot be a principal ideal. Therefore we have at least two distinct ideal classes, given

by OK and p0.
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Finally we analyse p1 and p2. We will show that they are in the same ideal class as

p0. For this purpose we look at α � 2 � ?
10 P OK . By Example 6.18, Npαq � �6.

By Proposition 7.2, Nppαqq � |Npαq| � 6. By Corollary 8.5, we know 6 P pαq, hence

p6q � pαq. By Corollary 8.15, we can find some ideal I such that p6q � Ipαq. By Theorem

8.16, the ideal p6q has a unique factorisation into finitely many prime ideals. Indeed, we

can find it as p6q � p2qp3q � p2
0p1p2. Since pαq is a factor of p6q, it must be the product

of some prime ideals in the factorisation of p6q. On the other hand, Nppαqq � 6, so it

has to be the product of an ideal of norm 2 and an ideal of norm 3, i.e., pαq � p0p1 or

pαq � p0p2. If the first case happens, then the ideal classes p1 � p0
�1 in the ideal class

group because pαq is a principal ideal. Similarly from p2q � p2
0 and p3q � p1p2, we also

know p0
�1 � p0 and p2 � p1

�1 � p0. It follows p0 � p1 � p2. If the second case happens,

then we can prove the same result by switching the subscripts in p1 and p2. Hence the

only distinct ideal classes are the ones represented by OK and p0. We conclude hK � 2

for K � Qp?10q.
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