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Abstract. This document contains the material for a 10-week number theory course

taught in the University of Bath in the first semester of the academic year 2014/15.

The audience consists mostly of 3rd/4th year undergraduate students with major in

mathematics. Some familiarity with abstract algebra is assumed. Standard topics in

elementary number theory are covered in the first five weeks, including arithmetic func-

tions, congruences and quadratic residues. In the last five weeks some topics in algebraic

number theory are covered, including the structure and the unique factorisation of ideals

in the ring of algebraic integers in a number field, and computation of class numbers

for quadratic fields. The approach we take in this part completely avoids Galois theory.

This document contains all lecture notes, exercise sheets and their complete solutions.

Each section contains material for exactly one week, in which each subsection is covered

in precisely one lecture of 50 minutes.

Contents

1. Unique Factorisation and Applications 4

1.1. Factorisation in integral domains 4

1.2. Arithmetic functions 7

1.3. Dirichlet product and Möbius inversion 10
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1. Unique Factorisation and Applications

We review the notion of unique factorisation and give some applications of unique fac-

torisation in the ring of integers.

1.1. Factorisation in integral domains. We have studied this topic extensively in

Algebra 2B. Here we review some important notions and results. In this lecture we

always assume R is a commutative ring with 1, such that 0 � 1. We say R is an integral

domain if for a, b P R with ab � 0, we have either a � 0 or b � 0. We recall the definitions

of Euclidean domains, principal ideal domains, unique factorisation domains, along with

other relevant concepts and notations. (If you learned Algebra 2B in 2013, you have seen

the mathematical content of these terminologies without knowing some of the names.)

Definition 1.1. Let R be an integral domain. A Euclidean valuation on R is a map

ν : R z 0
(Ñ  

0, 1, 2, � � � (
such that if a, b P R with b � 0, there exist q, r P R with the property that a � qb � r

and either r � 0 or νprq   νpbq. R is said to be a Euclidean domain if it has a Euclidean

valuation.

Example 1.2. We recall some important examples of Euclidean domains

(1) The ring of integers Z is an Euclidean domain, with the absolute value function

νpnq � |n| being a Euclidean valuation.

(2) For k a field, the polynomial ring of a single variable krxs is an Euclidean domain,

with the degree function νpfpxqq � deg fpxq being a Euclidean valuation.

(3) The ring of Gaussian integers

Zris �  
a� bi P C | a, b P Z

(
is an integral domain as it is a subring of the field of complex numbers C. The

function

νpa� biq � a2 � b2

provides a Euclidean valuation. See Exercise 1.4.

Definition 1.3. Let R be an integral domain. An ideal I of R is a principal ideal if

I � paq for some a P R. R is a principal ideal domain (PID) if every ideal of R is

principal.

Remark 1.4. Notice that we use a slightly different notation from the one you used in

Algebra 2B. Here paq � Ra is the ideal generated by a P R.

Theorem 1.5. Every Euclidean domain is a PID.
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Proof. See Theorem 2.5 (2013) or Theorem 3.10 (2014) in Algebra 2B. (The 2013 version

only proves this result in special cases, but some minor changes would make it into a

complete proof for arbitrary Euclidean domains, which is given in the 2014 version.) �

By Theorem 1.5, all examples discussed in Example 1.2 are PIDs.

Before proceeding we review some basic definitions.

Definition 1.6. Let R be an integral domain. If a, b P R with b � 0, we say that b divides

a if a � bc for some c P R. We denote it by b � a. (Otherwise we write b � a.) An element

u P R is called a unit if u divides 1. Two elements a, b P R are said to be associated if

a � bu for some unit u.

Remark 1.7. We can restate everything in the language of ideals: b � a iff paq � pbq; u P R
is a unit iff puq � R; a and b are associates iff paq � pbq. See Lemma 2.9 (2013) or Lemmas

3.15 and 3.16 (2014) in Algebra 2B.

Definition 1.8. Let R be an integral domain. A non-unit p P R is said to be irreducible

if a � p implies that a is either a unit or an associate of p. A non-unit p P R is said to be

prime if p � 0 and p � ab implies that p � a or p � b.
Proposition 1.9. We have

(1) Let R be an integral domain. Then every prime element is irreducible.

(2) Let R be a PID. Then every irreducible element is prime.

Proof. For (1), see Proposition 2.10 (2013) or Proposition 3.19 (2014) in Algebra 2B. For

(2), see Proposition 2.12 (2013) or Proposition 3.21 (2014). �

Clearly, for all examples discussed in Example 1.2, the two notions “prime” and “irre-

ducible” agree, so we can use them interchangeably. For historical reasons we usually say

“primes” in Z and “irreducible polynomials” in krxs.
We move on to the definition of unique factorisation domains.

Definition 1.10. An integral domain R is a unique factorisation domain (UFD) if the

following conditions are satisfied:

(1) Every non-zero non-unit element in R can be written as the product of finitely

many irreducible elements in R;

(2) Given two such factorisations, say r1r2 � � � rs � r11r
1
2 � � � r1t, we have s � t, and after

renumbering if necessary, each r1i is an associate of ri for 1 ¤ i ¤ s.

Theorem 1.11. Every PID is a UFD.
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Proof. See Theorem 2.14 (2013) or Theorem 3.26 (2014) in Algebra 2B. �

By Theorem 1.11, all examples discussed in Example 1.2 are UFDs.

Remark 1.12. Sometimes we prefer to eliminate the ambiguity of the factorisations coming

from units. The relation of being associated is an equivalence relation which partitions

irreducible elements into equivalence classes. From each equivalence class we pick a repre-

sentative and denote the set of all representatives (one from each class) by S. For instance,

in Z we can take the set of all positive primes (irreducibles and primes agree in Z); in

krxs we can take the set of all monic (leading coefficient 1) irreducible polynomials. Then

every non-zero element a P R can be written in the form

a � ur1r2 � � � rs
where u is a unit and r1, � � � , rs P S. Moreover u is unique and r1, r2, � � � , rs are unique

up to renumbering.

Corollary 1.13 (Fundamental Theorem of Arithmetic). Every non-zero integer n admits

a prime factorisation

n � p�1qεpa11 p
a2
2 � � � pass

where ε � 0 or 1, s is a non-negative integer, p1, p2, � � � , ps are distinct positive primes,

a1, a2, � � � , as are positive integers. This factorisation is unique up to the order of factors.

Proof. We have seen that unique factorisation holds for Z. By writing products of repeated

factors as powers we get the desired form. �

Remark 1.14. Unique factorisation in the ring of integers has fundamental importance.

However, unique factorisation fails for some other integral domains studied in number

theory. Understanding why it fails and how to fix it, is an important topic in algebraic

number theory. We will come back to this later.

The following famous result of Euclid is a nice application of the fundamental theorem of

arithmetic. The proof is simple and clever.

Theorem 1.15. There are infinitely many primes in Z.

Proof. It suffices to prove there are infinitely many positive primes in Z. We prove by

contradiction. Assume there are only finitely many positive primes. We can label all of

them in increasing order p1, p2, � � � , pn. Let N � p1p2 � � � pn � 1. Then N is greater than

1 and not divisible by any pi, i � 1, 2, � � � , n. On the other hand, N can be factored into

product of primes and hence is divisible by some prime p, which is different from any pi.

Contradiction! �
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1.2. Arithmetic functions. An arithmetic function is a complex valued function defined

on the set of positive integers, or in other words, simply a sequence of complex numbers.

Definition 1.16. An arithmetic function is a function

f : Z� Ñ C

where Z� is the set of all positive integers.

In principle one could assign any complex number as the value of the function at an

positive integer. We look at some examples.

Example 1.17. Here are some very simple examples.

(1) For every complex number c P C, we can define the constant function

fc : Z� Ñ C given by fcpnq � c for every n P Z�.

In particular, we denote the function which takes constant values 1 by I.

(2) Another function which will show up later will be the function I defined by

Ipnq �
#

1 if n � 1;

0 if n ¡ 1.

However we are mainly interested in arithmetic functions with a meaningful assignment

of values, most of which take values in integers.

Example 1.18. Here are some naturally defined arithmetic functions.

 For any n P Z�, define νpnq to be the number of positive divisors of n;

 For any n P Z�, define σpnq to be the sum of the positive divisors of n.

By virtue of the unique factorisation, we can obtain the following formulas for the two

functions:

Proposition 1.19. Assume the integer n ¡ 1 has the prime decomposition

n � pa11 p
a2
2 � � � pall ,

where p1, p2, � � � , pl are distinct positive primes. Then we have

νpnq � pa1 � 1qpa2 � 1q � � � pal � 1q;

σpnq � pa1�1
1 � 1

p1 � 1
� p

a2�1
2 � 1

p2 � 1
� � � p

al�1
l � 1

pl � 1
.
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Proof. To prove the first formula, we notice that m � n iff

m � pb11 p
b2
2 � � � pbll

with 0 ¤ bi ¤ ai for every i. Thus the positive divisors of n are one-to-one correspondent

to the n-tuples pb1, b2, � � � , blq with 0 ¤ bi ¤ ai for every i, and there are exactly

pa1 � 1qpa2 � 1q � � � pal � 1q
such n-tuples.

To prove the second formula, we notice that

σpnq �
¸

1¤b1¤a1,1¤b2¤a2,��� ,1¤bl¤al
pb11 p

b2
2 � � � pbll

where the sum is over the above set of n-tuples. Thus we can see that

σpnq � p1� p1 � p2
1 � � � � � pa11 qp1� p2 � p2

2 � � � � � pa22 q � � � p1� pl � p2
l � � � � � pall q

from which the result follows by applying the summation formula for geometric series. �

Next example is another arithmetic function which will play an important role in Möbius

inversion theorem. For convenience, we say an integer n square-free if it is not divisible by

the square of any integer greater than 1. An equivalent characterisation: n is square-free

iff n does not have repeated prime factors in its prime decomposition. In other words, n

is square-free iff n is the product of finitely many distinct primes.

Definition 1.20. For any positive integer n, we define the Möbius µ-function by

µpnq �

$''&
''%

1 if n � 1;

0 if n is not square-free;

p�1ql if n � p1p2 � � � pl is the product of l distinct primes.

We prove the following property of Möbius µ-function. Again, the unique factorisation is

the key to the proof.

Proposition 1.21. For any n P Z�, we have

¸
d�n

µpdq �
#

1 if n � 1

0 if n ¡ 1,

where the summation runs over all positive divisors of n.

Proof. The case of n � 1 is clear. Now we assume n ¥ 2. Let n � pa11 p
a2
2 � � � pall be

the prime decomposition of n for some l P Z�. The definition of µ-function shows that

only those divisors d of n which do not have repeated prime factors contribute to the

summation. For any i with 0 ¤ i ¤ l, we consider the number of divisors d of n which
8



are products of i distinct primes. Since the prime factors of d form a subset of those of n,

there are exactly
�
l
i

�
choices for such d, each of which contributes p�1qi to µpnq. Therefore

we have ¸
d�n

µpdq �
�
l

0



�
�
l

1



�
�
l

2



�
�
l

3



� � � � � p�1ql

�
l

l




� p1� 1ql � 0.

�

The definition of the µ-function seems somewhat artificial at the first glance. However

its significance will not be revealed until we introduce Dirichlet products of arithmetic

functions.
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1.3. Dirichlet product and Möbius inversion. Dirichlet product will be a handy tool

for establishing Möbius inversion.

Definition 1.22. Let f, g : Z� Ñ C be two arithmetic functions. The Dirichlet product

(or Dirichlet convolution) of f and g is the arithmetic function f �g defined by the formula

pf � gqpnq �
¸

d1d2�n
fpd1qgpd2q

where the sum runs over all pairs pd1, d2q of positive integers such that d1d2 � n.

Remark 1.23. Another equivalent way of writing the formula is

pf � gqpnq �
¸
d�n

fpdqgpn
d
q,

where the sum is over all positive divisors d of n. We will use both formulas in the

following discussion.

The Dirichlet product has many nice properties. In particular, it is commutative and

associative, as we expect for any “product”.

Lemma 1.24. Let f, g, h : Z� Ñ C be arithmetic functions, then

f � g � g � f
pf � gq � h � f � pg � hq.

Proof. Commutativity is immediate. Indeed, for any n P Z�, we have

pf � gqpnq �
¸

d1d2�n
fpd1qgpd2q �

¸
d2d1�n

gpd2qfpd1q � pg � fqpnq.

Associativity requires some more manipulations. For any n P Z�, we show that both

expressions ppf � gq � hqpnq and pf � pg � hqqpnq can be transformed into the summation°
d1d2d3�n fpd1qgpd2qhpd3q, where the sum runs over all 3-tuples pd1, d2, d3q of positive

integers such that d1d2d3 � n.

For the left-hand side, we have

ppf � gq � hqpnq �
¸

d0d3�n
pf � gqpd0qhpd3q

�
¸

d0d3�n

� ¸
d1d2�d0

fpd1qgpd2q
�
hpd3q

�
¸

d1d2d3�n
fpd1qgpd2qhpd3q.

The computation for the right-hand side is similar and gives the same expression. So we

are done. �
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Example 1.25. Here are some simple examples of Dirichlet products:

(1) Let I be the function defined in Example 1.17 and f an arbitrary arithmetic

function, then

I � f � f � I � f ;

(2) Let I be the function with constant value 1 and f an arbitrary arithmetic function,

then for every n P Z�, we have

pf � Iqpnq �
¸
d�n

fpdq;

(3) In particular, let f be the µ-function defined in Definition 1.20, then by Proposition

1.21 we have

µ � I � I � µ � I.

We are ready to prove the following theorem:

Theorem 1.26 (Möbius Inversion Theorem). Let f : Z� Ñ C be an arithmetic function.

If we define the arithmetic function F : Z� Ñ C by

F pnq �
¸
d�n

fpdq,

then we have

fpnq �
¸
d�n

µpdqF pn
d
q.

Proof. We use the full power of Lemma 1.24 and Example 1.25. The definition of F shows

F � f � I. Then we have

f � f � I � f � pI � µq � pf � Iq � µ � F � µ � µ � F,
which is what we want by Remark 1.23. �

As an immediate application of the theorem, we use it to obtain a formula for yet another

important arithmetic function: the Euler φ-function.

Definition 1.27. The Euler φ-function is defined to be the following arithmetic function:

for any n P Z�, φpnq is the number of integers m with 1 ¤ m ¤ n and hcfpm,nq � 1.

We first prove the following simple property of the φ-function.

Proposition 1.28. For any n P Z�, the Euler φ-function satisfies the identity¸
d�n

φpdq � n.
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Proof. Consider the n rational numbers

1

n
,

2

n
, � � � , n� 1

n
,
n

n
.

Reduce each to lowest terms; i.e. perform cancellations to express each number as a

quotient of relatively prime integers. The denominators will all be divisors of n. If d � n,

there are exactly φpdq of our numbers whose denominators are equal to d after reducing

to lowest terms. Thus they sum up to n, as desired. �

We can obtain a formula for the φ-function by Möbius inversion theorem.

Proposition 1.29. Let n � pa11 p
a2
2 � � � pall be the factorisation of n P Z� where p1, p2, � � � , pl

are distinct primes, then

φpnq � n

�
1� 1

p1


�
1� 1

p2



� � �

�
1� 1

pl



.

Proof. By Theorem 1.26 and Proposition 1.28, we have that

φpnq �
¸
d�n

µpdqn
d

� n�
¸
i

n

pi
�
¸
i j

n

pipj
�

¸
i j k

n

pipjpk
� � � �

� n

�
1� 1

p1


�
1� 1

p2



� � �

�
1� 1

pl



,

as desired. �

Remark 1.30. Using the same factorisation of n, we can also write the formula for Euler

φ-function in a slightly different form:

φpnq � pa1�1
1 pa2�1

2 � � � pal�1
l pp1 � 1qpp2 � 1q � � � ppl � 1q.

Indeed, we can substitute n by its prime factorisation in the previous formula and cancel

all denominators with the corresponding prime factors in n to get this formula. Caution:

it does not imply that each pi is still a prime factor of φpnq because the exponent ai � 1

could be zero.
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Exercise Sheet 1

This sheet is due in the lecture on Tuesday 7th October, and will be discussed in the

exercise class on Friday 10th October.

Exercise 1.1. Review of highest common factors.

(1) Use Euclidean algorithm to compute hcfp963, 657q and find a pair of integers m,n

satisfying 963m� 657n � hcfp963, 657q.
(2) For non-zero integers a and b, let d � hcfpa, bq, a � da1 and b � db1. Show that

hcfpa1, b1q � 1. (Hint: write d � am� bn for some m,n P Z.)

Exercise 1.2. Examples of arithmetic functions.

(1) Compute the values of νpnq, σpnq, µpnq, φpnq for n � 360 and n � 429.

(2) For any integer n ¥ 3, show that φpnq is even.

(3) For any integer n ¥ 2, show that the sum of all elements in the set tm P Z | 1 ¤
m ¤ n, hcfpm,nq � 1u is 1

2
nφpnq.

Exercise 1.3. Applications of Möbius inversion.

(1) Show that
°
d�n µpnd qνpdq � 1 for any n P Z�;

(2) Show that
°
d�n µpnd qσpdq � n for any n P Z�.

Exercise 1.4. Unique factorisation in the ring of Gaussian integers.

Consider the ring of Gaussian integers Zris � ta � bi P C | a, b P Zu and the function

ν : Zris Ñ t0, 1, 2, � � � u given by νpa � biq � a2 � b2 (the absolute value as a complex

number).

(1) Verify that for all α, β P Zris, νpαβq � νpαqνpβq. (Hint: either compute it directly,

or use the fact that νpαq � α � α.)

(2) Show that the function ν is a Euclidean valuation. (Hint: for α, β P Zris, consider
α
β

as a complex number. Choose q to be the Gaussian integer which is the nearest

to α
β

in the complex plane.)

(3) Conclude that unique factorisation holds for Zris.
(4) Show that α P Zris is a unit iff νpαq � 1. Conclude that the only units in Zris are

�1 and �i.
(5) For α P Zris, suppose νpαq is a prime in Z. Show that α is irreducible in Zris.
(6) Show that p2 � iqp2 � iq � 5 � p1 � 2iqp1 � 2iq are two factorisations of 5 into

irreducible elements in Zris. How is this consistent with unique factorisation?
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Solutions to Exercise Sheet 1

We provide at least one solution to each problem. Other approaches are also possible for

some problems.

Solution 1.1. Review of highest common factors.

(1) Using Euclidean algorithm, we have

963 � 657� 1� 306;

657 � 306� 2� 45;

306 � 45� 6� 36;

45 � 36� 1� 9;

36 � 9� 4� 0.

Hence we know hcfp963, 657q � 9 which is the last non-zero remainder. Then we

go backwards to find a linear combination which gives 1.

9 � 45� 36

� 45� p306� 45q
� 45� 7� 306

� p657� 306q � 306

� 657� 7� 306� 15

� 657� 7� p963� 657q � 15

� 657� 22� 963� 15.

So m � �15 and n � 22 is one solution.

(2) Since d � hcfpa, bq, there exist some m,n P Z, such that d � am � bn. (For

example, the Euclidean algorithm can always give such a pair of pm,nq.) By

substituting, we get d � da1m� db1n, hence 1 � a1m� b1n. If hcfpa1, b1q � k, then

k � a1 and k � b1, thus k � a1m� b1n � 1, which implies hcfpa1, b1q � 1.

Solution 1.2. Examples of arithmetic functions.
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(1) We factor 360 � 23� 32� 51. By the formulas in Proposition 1.19, Definition 1.20

and Proposition 1.29, we have

νp360q � p3� 1qp2� 1qp1� 1q � 24;

σp360q � 24 � 1

2� 1
� 33 � 1

3� 1
� 52 � 1

5� 1
� 15� 13� 6 � 1170;

µp360q � 0 since 360 is not square-free;

φp360q � 360� p1� 1

2
qp1� 1

3
qp1� 1

5
q � 96.

Similarly we have 429 � 3� 11� 13. Therefore

νp429q � p1� 1qp1� 1qp1� 1q � 8;

σp429q � 32 � 1

3� 1
� 112 � 1

11� 1
� 132 � 1

13� 1
� 4� 12� 14 � 672;

µp429q � p�1q3 � �1 since 429 is square-free;

φp429q � 429� p1� 1

3
qp1� 1

11
qp1� 1

13
q � 240.

(2) There are two different proofs. We show one of them here. The other proof will

be given together with part (3). We consider two separate cases: if n has any odd

prime factor p, then by Remark 1.30, φpnq has a factor p � 1 hence is even; if n

has no odd prime factor, then we can write n � 2a for some a ¥ 2, which implies

φpnq � 2a�1 by the same formula hence is even.

(3) Let S � tm P Z | 1 ¤ m ¤ n, hcfpm,nq � 1u. When n � 2, the only element in

S is 1, hence it is clear that the statement holds. From now on we assume n ¥ 3.

For every integer k with k ¤ n
2
, we consider the pair of integers tk, n� ku.

Let m � hcfpk, nq and m1 � hcfpn � k, nq. Then m � k and m � n, hence

m � n � k, which implies m � m1. A similar argument shows m1 � m. Therefore

m � m1, which implies either k and n� k are both in S, or neither is in S.

The two integers k and n� k in a pair are distinct unless k � n
2
, which happens

when n is even. However in such a case n
2
R S because hcfpn, n

2
q � n

2
¡ 1. We

conclude that S can be divided into pairs of distinct integers of the form tk, n�ku,
which proves the number of elements in S, i.e. φpnq, is even. Moreover the sum of

the two integers in a pair is n, and there are precisely φpnq
2

pairs in S (since there

are φpnq elements in S). This implies the sum of all elements in S is n � φpnq
2

, as

required.

Solution 1.3. Applications of Möbius inversion.
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By Example 1.18, for every n P Z�, we can write

νpnq �
¸
d�n

1;

σpnq �
¸
d�n

d.

Therefore we apply Theorem 1.26 for fpnq � 1 and F pnq � νpnq to obtain

1 �
¸
d�n

µpdqν
�n
d

	
�

¸
d�n

µ
�n
d

	
νpdq

which is the first statement. For fpnq � n and F pnq � σpnq we obtain

n �
¸
d�n

µpdqσ
�n
d

	
�

¸
d�n

µ
�n
d

	
σpdq

which is the second statement.

Solution 1.4. Unique factorisation in the ring of Gaussian integers.

(1) The formula is in fact true for any complex numbers. For any α P C, we have

νpαq � αα. Hence for any α, β P C, we have

νpαβq � αβ � αβ � αα � ββ � νpαqνpβq.
(2) The commutative ring Zris does not have zero divisors because it is a subring of

C in which there is no zero divisor. Now we check that ν is a Euclidean valuation.

Let α � a� bi and β � c� di � 0. We can divide α by β as complex numbers

and write α
β
� r � si where r, s are real numbers. Choose integers m,n such that

|r�m| ¤ 1
2

and |s�n| ¤ 1
2

(the choice may not be unique). Set γ � m�ni, then

γ P Zris and νpα
β
� γq � pr �mq2 � ps � nq2 ¤ 1

4
� 1

4
� 1

2
. Set δ � α � βγ, then

δ P Zris and either δ � 0 or νpδq � νpβpα
β
� γqq � νpβqνpα

β
� γq ¤ 1

2
νpβq   νpβq.

Hence ν defines a Euclidean valuation on Zris, and Zris is a Euclidean domain.

(3) By Theorem 1.5 and Theorem 1.11, we know that a Euclidean domain is a UFD.

Hence by part (2) we conclude that Zris is a UFD.

(4) Assume α is a unit, then there exists β P Zris, such that ab � 1. We apply the

Euclidean valuation ν on both sides and use part (1) to get νpαqνpβq � νp1q � 1.

Since both νpαq and νpβq are non-negative integer, the only possibility is νpαq �
νpβq � 1.

On the other hand, assume νpαq � 1. Let α � a � bi, then a2 � b2 � 1. This

implies pa � biqpa � biq � 1. Since a � bi P Zris, we conclude that α divides 1,

hence α is a unit.

To find all the units, we need to find all pairs of integers a, b such that a2�b2 � 1.

This is only possible when a � �1 and b � 0, or a � 0 and b � �1. In other

words, α � �1 or �i.
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(5) We prove by contradiction. Assume α is not irreducible. Then we can write

α � α1α2 where neither factor is zero or a unit. By part (4) we know νpα1q and

νpα2q are both positive integers larger than 1. Therefore by part (1) we know

νpαq � νpα1qνpα2q is composite, not a prime. Contradiction.

(6) We first show they are both irreducible factorisations of 5. We only need to check

all factors are irreducible. This is true by part (5) because νp2� iq � νp1�2iq � 5

is a prime integer.

We explain why this is consistent with unique factorisation. By Definition 1.10,

unique factorisation means the number of irreducible factors agrees in two fac-

torisations, and the corresponding factors are associated after reordering. In this

example we have two irreducible factors in either factorisation. We can reorder

the factors as p2� iqp2� iq � 5 � p1�2iqp1�2iq. Notice that 2� i � i � p1�2iq and

i is a unit in Zris, so 2� i and 1�2i are associated. Similarly 2� i � p�iq � p1�2iq
implies that 2� i and 1� 2i are also associated.
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2. Congruences

We first recall the notion of congruence, then study how to solve linear congruence equa-

tions. The Chinese remainder theorem is important in solving simultaneous equations.

2.1. Congruences and linear equations. We recall the following definition from Dis-

crete Mathematics and Programming:

Definition 2.1. If a, b,m P Z and m � 0, we say that a is congruent to b modulo m if m

divides b� a. This relation is written as

a � b pmod mq.
For any a P Z, the set a � tn P Z | n � a pmod mqu of integers congruent to a modulo

m is called a congruence class modulo m. The set of congruence classes modulo m is

denoted by Zm.

Remark 2.2. Although the notion of congruence is still well-defined for any non-zero

integer m, we are usually only interested in positive values of m, as congruences modulo

m and �m coincide.

We have seen the following structure on Zm:

Proposition 2.3. For any non-zero integer m, the set Zm has the structure of a commu-

tative ring with identity. In fact, it is the quotient ring Z{pmq where pmq is the principal

ideal of Z generated by m.

Proof. See Example (1) on Page 10 (2013) or Examples 1.20 and 1.35 (2014) in Algebra

2B. �

The cancellation law for congruences will be handy for solving congruence equations.

Proposition 2.4 (Cancellation Law). For any a, b, k,m P Z, k � 0, m � 0, assume

hcfpk,mq � d, then ka � kb pmod mq iff a � b pmod m
d
q.

Proof. See Exercise 2.3. �

Now we turn to look at congruence equations. In general a congruence equation has the

form

fpxq � 0 pmod mq,
where fpxq is a polynomial with integer coefficients and m is a non-zero integer. We are

only interested in solutions modulo m; i.e. solutions in Zm. The number of solutions is

the number of congruence classes in Zm which satisfy the given equation.
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Proposition 2.5. For any a, b,m P Z, a � 0, m � 0, assume hcfpa,mq � d, then the

congruence equation ax � b pmod mq has solutions iff d � b. In this case there are exactly

d solutions in Zm. If x0 is a solution, then the complete set of solutions is given by the

congruence classes of x0, x0 �m1, x0 � 2m1, � � � , x0 � pd� 1qm1, where m1 � m
d

.

Proof. If x0 is a solution, then ax0 � b � my0 for some integer y0. Thus ax0 �my0 � b.

Since d divides ax0 �my0, we must have d � b.
Conversely, suppose that d � b then b � cd for some c P Z. Since hcfpa,mq � d, there

exist integers x10 and y10 such that ax10 �my10 � d. Multiply both sides of the equation by

c. Then apx10cq �mpy10cq � b. Let x0 � x10c. Then ax0 � b pmod mq.
We have shown that ax � b pmod mq has a solution iff d � b.
Suppose that x0 and x1 are solutions. ax0 � b pmod mq and ax1 � b pmod mq imply that

ax1 � ax0 pmod mq. By Proposotion 2.4, it is equivalent to x1 � x0 pmod m1q, hence

x1 is a solution iff x1 � x0 � km1 for some integer k. Moreover, for each k P Z there are

integers r and s such that k � rd � s and 0 ¤ s   d. Thus x1 � x0 � sm1 � rm, or

equivalently, x1 � x0�sm1 pmod mq. These solutions are in d distinct congruence classes

modulo m. This completes the proof. �

We immediately have the following corollary:

Corollary 2.6. If hcfpa,mq � 1, then ax � b pmod mq has exactly one solution. In

particular, if p is a prime and p � a, then ax � b pmod pq has exactly one solution.

Proof. In this caes d � 1 so clearly d � b, and there is exactly d � 1 solution. �

In practice, we can solve such equations by cancellations and the Euclidean algorithm.

Example 2.7. As an example we consider the congruence 9x � 6 pmod 15q. Since

d � hcfp9, 15q � 3 divides 6, the equation has 3 solutions modulo 15. By Proposition 2.4

we can cancel 3 on both sides and reduce the equation to 3x � 2 pmod 5q. Euclidean

algorithm shows that hcfp3, 5q � 1 and 3 � 2 � 5 � p�1q � 1, thus 3 � 2 � 1 pmod 5q.
Then we multiply both sides by 2 and get x � 4 pmod 5q. Therefore the solutions to the

original equation are x � 4, 9, or 14 pmod 15q.
From 3x � 2 pmod 5q we can also try to add multiples of 5 to 2 until we can cancel

the coefficient 3. In this case we have 3x � 2 � 5 � 2 pmod 5q. By Proposition 2.4 we

still get x � 4 pmod 5q. Hence the solutions to the original equation are x � 4, 9, or 14

pmod 15q.
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Proposition 2.5 can also be used to solve linear Diophantine equations of the form ax�by �
c, where a, b, c P Z. We explain it by the following example.

Example 2.8. We want to find all integer solutions to the equation 9x � 15y � 6. We

solve it by considering the congruence equation 9x � 6 pmod 15q. The computation above

has showed that the solution is given by x � 4 pmod 5q, i.e. x � 5k � 4 for any k P Z.

By substitution we have 9p5k � 4q � 15y � 6, so y � �3k � 2. Therefore all solutions are

given by x � 5k � 4, y � �3k � 2 where k is an arbitrary integer.

Now we apply Proposition 2.5 to study the group of units in the ring Zm.

Proposition 2.9. Let m be a positive integer. An element a P Zm is a unit iff hcfpa,mq �
1. There are exactly φpmq units in Zm. Zm is a field iff m is a prime.

Proof. a P Zm is a unit iff ax � 1 pmod mq is solvable. By Proposition 2.5, this is

equivalent to hcfpa,mq � 1, hence equivalent to a and m being coprime.

The number of units is precisely the number of such a’s with 1 ¤ a ¤ m and hcfpa,mq � 1.

By Definition 1.27, there are precisely φpmq units in Zm.

If p is a prime and a � 0 in Zp, then hcfpa, pq � 1. Thus every non-zero element of Zp is

a unit, which shows that Zp is a field.

If m is not a prime, then we can write m � m1m2, where 1   m1,m2   m. Thus m1 � 0

and m2 � 0, but m1 �m2 � m � 0. Therefore Zm is not a field. �

We immediately obtain the following corollaries, both of which have their own names:

Corollary 2.10 (Euler’s Theorem). If hcfpa,mq � 1, then we have aφpmq � 1 pmod mq.

Proof. The units in Zm form a group of order φpmq. If a and m are coprime, a is a unit.

Thus aφpmq � 1, or equivalently, aφpmq � 1 pmod mq. �

Corollary 2.11 (Fermat’s Little Theorem). If p is a prime and p � a, then we have

ap�1 � 1 pmod pq.

Proof. If p � a, then a are p are relatively prime. Thus aφppq � 1 pmod pq. The result

follows, since for a prime p, we have φppq � p� 1. �
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2.2. Chinese remainder theorem. Sometimes we need to solve a system of congruence

equations. The main result for this type of problems is the Chinese remainder theorem.

We will continue to work in Z but this theorem is valid in more general situations; see

Proposition 2.17 (2013) or Theorem 2.24 (2014) in Algebra 2B for two other versions.

Theorem 2.12. Suppose that m1,m2, � � � ,mk are pairwise coprime (i.e. hcfpmi,mjq � 1

for i � j) non-zero integers and m � m1m2 � � �mk. Then the system of congruence

equations

x � b1 pmod m1q,
x � b2 pmod m2q,

� � � ,
x � bk pmod mkq.

has a solution, which is unique modulo m.

Proof. We prove it by induction on k. For k � 1 there is nothing to prove.

For k � 2, an integer solution to x � b1 pmod m1q is of the form x � m1q�b1. So we need

to have m1q � b1 � b2 pmod m2q, or m1q � b2 � b1 pmod m2q. Since hcfpm1,m2q � 1,

by Proposition 2.5, it has a unique solution for q, say q � q0 pmod m2q. Or equivalently,

q � m2r � q0 for any r P Z. Hence x � m1m2r � pm1q0 � b1q for any r P Z, which is the

unique solution for x modulo m � m1m2.

For general k, suppose we have proved the result for k � 1. That is, the first k � 1

congruence equations have a unique common solution x � s pmod m1q for some s, where

m1 � m1m2 � � �mk�1. Then the problem reduces to a system of two congruences

x � s pmod m1q,
x � bk pmod mkq.

By the case for k � 2 above, there is a unique solution for x modulo m � m1mk. This

finishes the induction. �

To use the theorem to make explicit computations, we just need to follow the proof. We

illustrate the idea using the following example.

Example 2.13. Consider the system

x � 31 pmod 41q,
x � 59 pmod 26q.

From the first equation we can write x � 41q � 31. We plug it into the second equation

and get 41q � 31 � 59 pmod 26q. By removing multiples of 26 we reduce it to 15q � 2
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pmod 26q. By Euclidean algorithm, we have hcfp15, 26q � 1 and 15 � 7 � 26 � 4 � 1,

which implies q � 14 pmod 26q is the unique solution for q. If we write q � 26r�14, then

x � 41� 26r � p14� 41� 31q, i.e. x � 605 pmod 1066q.
Remark 2.14. We explain what to do in slightly more complicated situations.

(1) If there are more than two equations in the system, we need to find the common

solution to the first two equations, then combine the result with the third equation

to find a solution to all three equations, etc. This procedure is reflected by the

inductive step in the proof.

(2) If the equations in the system are not in the form of x � bi pmod miq, we need to

solve (at least) one equation before using substitution. See Example 2.15.

(3) In case the mi’s are not pairwise coprime, Theorem 2.12 does not apply any more.

Therefore the existence and uniqueness of solutions may not hold. However the

substitution method can still be used to solve the system. See Example 2.15.

Example 2.15. Consider the system

5x � 7 pmod 12q,
7x � 1 pmod 10q.

Notice that the coefficients in front of x are not 1. Moreover 12 and 10 are not coprime.

We can nevertheless solve it. Using the method in Example 2.7 we find the solution to

the first equation x � 11 pmod 12q. Then we write x � 12q � 11 and substitute x in

the second equation. We get 7p12q � 11q � 1 pmod 10q, or 84q � �76 pmod 10q. Using

the method in Example 2.7 again, we remove multiples of 10 on both sides and cancel

the common factor 2 to reduce the equation to 2q � 2 pmod 5q, whose solution is q � 1

pmod 5q. Write q � 5r � 1 to get x � 12p5r � 1q � 11 � 60r � 23. Hence the solution to

the original system is x � 23 pmod 60q.

We wish to interpret the Chinese remainder theorem in the language of rings. We need

to recall the definition for the direct product of rings; see Definition on Page 27 (2013) or

Definition 2.22 (2014) in Algebra 2B.

Definition 2.16. Let R1, R2, � � � , Rn be commutative rings with 1. The direct product is

the ring

R1 �R2 � � � � �Rn �
 pa1, a2, � � � , anq | ai P Ri for each i

(
,

in which addition and multiplication are given component-wise by

pa1, a2, � � � , anq � pb1, b2, � � � , bnq � pa1 � b1, a2 � b2, � � � , an � bnq,
pa1, a2, � � � , anq � pb1, b2, � � � , bnq � pa1b1, a2b2, � � � , anbnq.

Remark 2.17. We make the following observations.
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(1) All the algebraic laws hold inR1�R2�� � ��Rn since they hold for every component.

Clearly the element p0R1 , 0R2 , � � � , 0Rnq is the zero element, and the additive inverse

of pa1, a2, � � � , anq is p�a1,�a2, � � � ,�anq. The element p1R1 , 1R2 , � � � , 1Rnq is the

multiplicative identity. Thus R1 �R2 � � � � �Rn is a commutative ring with 1.

(2) Notice that pa1, a2, � � � , anq is a unit in R1 �R2 � � � � �Rn iff ai is a unit in Ri for

each i. We usually denote the group of units of a ring R by R�, therefore we have

pR1 �R2 � � � � �Rnq� � R�
1 �R�

2 � � � � �R�
n.

See Remark on Page 27 (2013) or Remark 2.23 (2014) in Algebra 2B.

Now we restate the Chinese remainder theorem as follows:

Corollary 2.18. Suppose that m1,m2, � � � ,mk are pairwise coprime non-zero integers

and m � m1m2 � � �mk. Then there is a ring isomorphism

Zm � Zm1 � Zm2 � � � � � Zmk
.

Proof. For each i there is a natural ring homomorphism ψi : Z Ñ Zmi
which maps

every integer n to the congruence class modulo mi containing n. We construct a map

ψ : Z Ñ Zm1 � Zm2 � � � � � Zmk
by ψpnq � pψ1pnq, ψ2pnq, � � � , ψpnqq. We can see ψ

respects additions and multiplications, because each component ψi does. Therefore ψ is

a ring homomorphism.

We apply Theorem 2.12. The existence of solutions shows that ψ is surjective; in other

words, imψ � Zm1 � Zm2 � � � � � Zmk
. The uniqueness of solutions modulo m shows

that kerψ � pmq. By the fundamental isomorphism theorem of rings (Theorem 1.8

(2013) or Theorem 2.13 (2014) in Algebra 2B), ψ induces a ring isomorphism Z{pmq �
Zm1 � Zm2 � � � � � Zmk

. By Proposition 2.3, the left-hand side is precisely Zm. �

We have the following immediate consequence concerning the groups of units.

Corollary 2.19. Suppose that m1,m2, � � � ,mk are pairwise coprime non-zero integers

and m � m1m2 � � �mk. Then there is a group isomorphism

Z�
m � Z�

m1
� Z�

m2
� � � � � Z�

mk
.

Proof. We apply Remark 2.17 and Corollary 2.18 and obtain

Z�
m � pZm1 � Zm2 � � � � � Zmk

q� � Z�
m1
� Z�

m2
� � � � � Z�

mk

as desired. �
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Remark 2.20. This result is very helpful in studying the group of units in Z�
m for an

arbitrary positive integer m. More precisely, let m � 2apa11 p
a2
2 � � � pall be the prime decom-

position of m, where p1, p2, � � � pl are distinct odd primes. Since 2a, pa11 , p
a2
2 , � � � , pall are

pairwise coprime, we get

Z�
m � Z�

2a � Z�
p
a1
1
� Z�

p
a2
2
� � � � � Z�

p
al
l
.

Therefore, to understand the group structure of Z�
m for an arbitrary m, it suffices to

understand it for m being powers of primes. This is what we are going to study next.
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Exercise Sheet 2

This sheet is due in the lecture on Tuesday 14th October, and will be discussed in the

exercise class on Friday 17th October.

Exercise 2.1. Solving linear equations.

(1) Solve the equation 140x � 98 pmod 84q.
(2) Solve the equation 28x � 124 pmod 116q.
(3) Find all integer solutions to the equation 12x� 7y � 17.

(4) Let a, b, c P Z where a and b are not simultaneously zero. Show that the equation

ax� by � c has solutions in integers iff hcfpa, bq � c.
Exercise 2.2. Solving systems of linear equations.

(1) Solve the system x � 1 pmod 7q, x � 4 pmod 9q, x � �2 pmod 5q.
(2) Solve the system 4x � 6 pmod 13q, 6x � 4 pmod 8q.
(3) Solve the system x � 7 pmod 15q, x � 5 pmod 9q.

Exercise 2.3. Cancellation law for congruences.

Let a, b, k,m P Z, k � 0, m � 0.

(1) Assume k � m. Show that ka � kb pmod mq iff a � b pmod m
k
q;

(2) Assume hcfpk,mq � 1. Show that ka � kb pmod mq iff a � b pmod mq;
(3) In general, assume hcfpk,mq � d. Show that ka � kb pmod mq iff a � b pmod m

d
q.

(Hint: use parts (1) and (2).)

Exercise 2.4. Wilson’s theorem and beyond.

(1) Let p be an odd prime. If k P t1, 2, � � � , p � 1u, show that there is a unique bk in

this set such that kbk � 1 pmod pq.
(2) Show that k � bk iff k � 1 or k � p� 1.

(3) Use parts (1) and (2) to prove that pp � 1q! � �1 pmod pq. This is known as

Wilson’s theorem.

(4) If n P Z, n ¡ 1, is not a prime, show that pn� 1q! � 0 pmod nq unless n � 4.

(5) Let n P Z, n ¡ 1. Conclude that pn� 1q! � �1 pmod nq iff n is a prime.
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Solutions to Exercise Sheet 2

Solution 2.1. Solving linear equations.

(1) We use the Euclidean algorithm to compute hcfp140, 84q and decide if the equation

has a solution.

140 � 84� 1� 56;

84 � 56� 1� 28;

56 � 28� 2� 0.

Hence hcfp140, 84q � 28, which does not divide 98. By Proposition 2.5, the equa-

tion has no solution.

(2) By Euclidean algorithm, we can find hcfp28, 116q.
116 � 28� 4� 4;

28 � 4� 7� 0.

Hence hcfp28, 116q � 4, which divides 124. So the equation has 4 solutions modulo

116. We can solve it first by cancelling 4 to get 7x � 31 pmod 29q, which reduces

to 7x � 2 pmod 29q. Now we use Euclidean algorithm for the pair 7 and 29.

29 � 7� 4� 1;

7 � 1� 7� 0.

So we simply have 1 � 29 � 7 � 4 hence 7 � p�4q � 1 pmod 29q. Multiply both

sides by 2 to get 7 � p�8q � 2 pmod 29q. Since we usually prefer to use positive

numbers as representatives of congruence classes, we add 29 to �8 to get 21. Hence

x � 21 pmod 29q. To get solutions modulo 116, we keep adding 29 to 21 until

we get repeated congruence classes. So we have x � 21, 50, 79 or 108 pmod 116q,
which are all solutions to the original equation.

(3) We write it as a congruence equation 12x � 17 pmod 7q. Since hcfp12, 7q � 1, we

should have a unique solution to it. To solve the equation we can add multiples of 7

to 17 until we can cancel the coefficient 12. Hence we have 12x � 24 pmod 7q, then

x � 2 pmod 7q. We write x � 7k�2 for an arbitrary k P Z, then substitute x in the

original equation to get 12p7k�2q�7y � 17. Therefore we have 7y � �84k�7 thus

y � �12k � 1. The solutions to the original equation is x � 7k � 2, y � �12k � 1

for an arbitrary k P Z.

(4) For simplicity we write d � hcfpa, bq. For one direction, assume that ax � by � c

has a solution x � x0 and y � y0. Then ax0 � by0 � c. Since d � a and d � b,
we know d � pax � byq, which gives d � c. For the other direction, assume d � c,
then we can write c � dc1 for some integer c1. Since d � hcfpa, bq, we can find
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integers x10 and y10, such that ax10� by10 � d (for example, by Euclidean algorithm).

Multiply both sides by c1, then we get ax10c
1 � by10c

1 � dc1 � c. Therefore x � x10c
1

and y � y10c
1 is a solution.

Solution 2.2. Solving systems of linear equations.

(1) We find a common solution to the first two equations. From the first equation we

can write x � 7q � 1. Substituting x in the second equation to get 7q � 1 � 4

pmod 9q, hence 7q � 3 pmod 9q. Adding 18 to 3 and we get 7q � 21 pmod 9q,
hence q � 3 pmod 9q. Write q � 9r�3 to get x � 7p9r�3q�1 � 63r�22. So the

solution to the first two equations is x � 22 pmod 63q. Now we bring the third

equation into the question. By substitution we get 63r� 22 � �2 pmod 5q, hence

63r � �24 pmod 5q. We reduce it to 3r � 1 pmod 5q, hence 3r � 6 pmod 5q,
which gives r � 2 pmod 5q. Write r � 5s�2 to get x � 63p5s�2q�22 � 315s�148.

So the solution to the original system is x � 148 pmod 315q.
(2) Since hcfp4, 13q � 1 divides 6 and hcfp6, 8q � 2 divides 4, both equations have so-

lutions. From 4x � 6 pmod 13q we get 4x � 32 pmod 13q hence x � 8 pmod 13q.
Write x � 13q � 8 and substitute x in the second equation to get 6p13q � 8q � 4

pmod 8q. We write it as 78q � �44 pmod 8q and reduce it to 6q � 4 pmod 8q.
By cancelling 2 we get 3q � 2 pmod 4q. By adding 4 to 2 we get 3q � 6 pmod 4q
hence q � 2 pmod 4q. We write q � 4r � 2, then x � 13p4r � 2q � 8 � 52r � 34.

So the solution is x � 34 pmod 52q.
Remark : you might ask if the result is consistent with the Chinese remainder

theorem because the modulus is not 13� 8 � 104. In fact, the solution to the first

equation is x � 8 pmod 13q. And the second equation has two solutions x � 2

pmod 8q and x � 6 pmod 8q. By the Chinese remainder theorem, they combine to

give two solutions to the original system, which are x � 34 pmod 104q and x � 86

pmod 104q. They can be represented by a single congruence x � 34 pmod 52q.
(3) From the first equation we can write x � 15q � 7. We substitute x in the second

equation to get 15q�7 � 5 pmod 9q. That is 15q � �2 pmod 9q, which reduces to

6q � 7 pmod 9q. Notice that hcfp6, 9q � 3 which does not divide 7. By Proposition

2.5, this equation has no solution. Hence so is the original system.

Solution 2.3. Cancellation law for congruences.

(1) Since k � m, we can write m � km1 for some integer m1. For one direction, assume

ka � kb pmod mq. Then there exists some c P Z such that ka � kb � cm. We

divide both sides by k to get a � b � cm1, which implies a � b pmod m1q, as

required.
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For the other direction, assume a � b pmod m1q. Then there exists some c P Z
such that a� b � cm1. We multiply both sides by k to get ka� kb � ckm1 � cm,

which implies ka � kb pmod mq.
(2) Since ka � kb pmod mq, we know m � pka� kbq � kpa� bq. Since hcfpk,mq � 1,

we claim that we have m � pa� bq. Indeed, using the condition hcfpk,mq � 1, we

can find some α, β P Z, such that kα �mβ � 1. Multiply both sides by a � b to

get kpa � bqα �mpa � bqβ � a � b. Since m divides both terms on the left-hand

side, we conclude that m divides the right-hand side; i.e. m � pa � bq. It follows

that a � b pmod mq.
For the other direction, assume a � b pmod mq. Then we know m � pa � bq,

hence m � kpa� bq � ka� kb. It follows that ka � kb pmod mq.
(3) Since hcfpk,mq � d, we can write k � dk1 and m � dm1. By Exercise 1.1 (2), we

know hcfpk1,m1q � 1. The condition ka � kb pmod mq is equivalent to dk1a � dk1b
pmod dm1q, which is equivalent to k1a � k1b pmod m1q by part (1), which is further

equivalent to a � b pmod m1q by part (2). This proves the equivalence required in

question.

Solution 2.4. Wilson’s theorem and beyond.

(1) We write S � t1, 2, � � � , p� 1u. For any k P S, p � k hence hcfpk, pq � 1, which

implies kx � 1 pmod pq has a unique solution modulo p by Proposition 2.5. Since

the congruence class 0 is not the solution, this solution must be a congruence class

b for some b not divisible by p. This congruence contains exactly one element in

the set S, which we call bk. Therefore this bk is the unique solution in S to the

equation kx � 1 pmod pq.
(2) When k � 1, it is clear that bk � 1 does satisfy the equation kbk � 1 pmod pq.

When k � p� 1, it is also clear that bk � p� 1 satisfy the same equation because

kbk � pp� 1qpp� 1q � p�1qp�1q � 1 pmod pq.
It remains to show that these are the only values of k which make k � bk.

In other words, if k2 � 1 pmod pq is satisfied by some k P S, we want to show

that k � 1 or k � p � 1. Indeed, the equation k2 � 1 pmod pq is equivalent to

p � pk2 � 1q � pk � 1qpk � 1q, which implies that either p � k � 1 or p � k � 1

because p is a prime. If p � k � 1, then k � �1 pmod pq, so the only value in S is

k � p� 1. If p � k � 1, then k � 1 pmod pq, so the only value in S is k � 1. This

shows that the only values for k which make k � bk are k � 1 and k � p� 1.

(3) By parts (1) and (2), the set Szt1, p� 1u can be divided into pairs, such that the

product of the two elements in each pair is congruent to 1 modulo p. Hence the

product of all elements in Szt1, p � 1u is congruent to 1 modulo p. Taking the
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remaining two elements 1 and p�1 into consideration, the product of all elements

in S is congruent to p� 1 modulo p, or equivalently, �1 modulo p.

(4) Assume n is composite and n � 4, then we can write n � ab for some a, b P Z,

1   a, b   n. There are two cases. If a � b, then a and b appear as distinct

factors in pn� 1q!. Hence pn� 1q! is a multiple of ab. In other words, pn� 1q! � 0

pmod nq. If a � b, then the assumption implies a � b ¥ 3, hence 2a   ab � n.

Now a and 2a appear as distinct factors in pn � 1q!. Hence pn � 1q! is a multiple

of a � 2a � 2ab � 2n, which implies pn � 1q! � 0 pmod nq. When n � 4, we have

p4� 1q! � 3! � 6 � 2 pmod 4q.
(5) The “if” part is proved in part (3) for odd primes, and is clear for n � 2. The

contrapositive of the “only if” part is proved in part (4). Therefore the condition

pn� 1q! � �1 pmod nq is equivalent to n being a prime.
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3. Primitive Roots

We study the group structure of Z�
m for any integer m ¥ 2. In particular, we wish to

know when it is a cyclic group. This leads to the notion of the primitive root.

3.1. The cases of primes and powers of 2. We start with the definition of primitive

roots.

Definition 3.1. Let a,m P Z, m ¥ 2, hcfpa,mq � 1. a is said to be a primitive root

modulo m if the group of units Z�
m is cyclic and the congruence class a is a generator.

Remark 3.2. We make some comments about this definition.

(1) Assume a and m and coprime. The order of a modulo m is defined to be the

order of a in the group of units Z�
m. For any integer n, an � 1 pmod mq iff n is

a multiple of the order of a modulo m. In this terminology, a is a primitive root

modulo m iff a is coprime to m and the order of a modulo m is φpmq.
(2) Knowing that a is a primitive root modulo m allows us to write

Z�
m � t a k | k P Z, 0 ¤ k   φpmq u.

In other words, every integer coprime to m is congruent to ak for some k P Z. This

will be extremely helpful in many different situations. See Exercises 3.2 and 3.3.

(3) If a is a primitive root modulo m, then Z�
m is cyclic of order φpmq hence has

φpφpmqq generators. More precisely, any primitive root modulo m lies in the

congruence class a k for some k with 0 ¤ k   φpmq and hcfpk, φpmqq � 1.

We have seen in Remark 2.20 that it is essential to understand Z�
m when m is a power of

a prime in order to understand the general case. We first consider the situation when m

is a prime. We need the following lemma:

Lemma 3.3. Let fpxq P krxs where k is a field. Suppose that deg fpxq � n. Then f has

at most n distinct roots in k.

Proof. The proof goes by induction on n. For n � 0 the assertion is trivial. Assume that

the statement is true for polynomials of degree n � 1. If fpxq has no roots in k, we are

done. If α is a root, since krxs is a Euclidean domain, we can write fpxq � px�αqqpxq�r,
where r is a constant. Setting x � α we see that r � 0. Thus fpxq � px � αqqpxq and

deg qpxq � n � 1. If β � α is another root of fpxq, then 0 � fpβq � pβ � αqqpβq, which

implies that qpβq � 0. Since by induction qpxq has at most n� 1 distinct roots, fpxq has

at most n distinct roots. �

The following theorem is useful in many situations.
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Theorem 3.4. Let K be a field and K� the group of non-zero elements under multipli-

cation. Suppose G is a finite subgroup of K�, then G is cyclic.

Proof. We prove by strong induction on n � |G|. If n � 1 there is nothing to prove. Now

we assume any subgroup of K� with order smaller than n is cyclic.

For any d with d � n and d   n, we write Gd � tg P G | gd � 1u. We claim Gd is a

subgroup of G. Indeed, 1 P Gd because 1d � 1. If g1, g2 P Gd, then pg1g2qd � gd1g
d
2 �

1 because multiplication is commutative in the field K. Therefore Gd is closed under

multiplication. Moreover, if g P Gd, then pg�1qd � pgdq�1 � 1, hence Gd is closed under

taking inverse. These conclude that Gd is a group, thus a subgroup of G. Each element of

Gd is a solution to xd � 1 � 0 in K, so |Gd| ¤ d by Lemma 3.3. By induction hypothesis

we know Gd is a cyclic group.

Let ψpdq be the number of elements of order d in G. Each such element is contained in

Gd, so ψpdq is also the number of elements of order d in Gd. If |Gd|   d then ψpdq � 0.

Otherwise Gd is a cyclic group of order d and ψpdq � φpdq. So we always have ψpdq ¤ φpdq.
On one hand ψpnq �°

d�n,d n ψpdq � n since the order of any element of G is a divisor of

n. On the other hand φpnq�°
d�n,d n φpdq � n by Proposition 1.28. Since for each d   n

we have ψpdq ¤ φpdq, we must have ψpnq ¥ φpnq ¡ 0. In other words, there are elements

of order n in G, hence G is cyclic. �

The following immediate consequence has fundamental importance. It was first proved

by Gauss.

Corollary 3.5. Let p be a prime, then Z�
p is a cyclic group; i.e. there exist primitive

roots modulo p.

Proof. By Proposition 2.9, Zp is a field. Then the result follows from Theorem 3.4. �

Next we study the case of prime powers. We will show that primitive roots exist for powers

of odd primes, but the situation is completely different for powers of 2. The necessity of

treating 2 differently from the other primes occurs repeatedly in number theory.

Proposition 3.6. Let l be a positive integer. Then Z�
2l

is not cyclic unless l � 1 or 2.

Proof. It is easy to see that 1 is a primitive root modulo 2, and 3 is a primitive root

modulo 4. From now on we assume that l ¥ 3. We claim that

a2l�2 � 1 pmod 2lq
for every odd integer a. It means that the order of every element in Z�

2l
is strictly smaller

than φp2lq, hence Z�
2l

cannot be cyclic.
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We prove this claim by induction on l. When l � 3, Z�
8 � t1, 3, 5, 7u. We can check them

one by one and conclude a2 � 1 pmod 8q for any odd integer a. Now we assume the claim

holds for l, then we can write a2l�2 � 1� b � 2l, thus

a2l�1 � p1� b � 2lq2 � 1� b � 2l�1 � b2 � 22l.

The last two terms are divisible by 2l�1, hence a2l�1 � 1 pmod 2l�1q, i.e. the claim holds

for l � 1. �

Remark 3.7. For enthusiasts: for any l ¥ 3, we actually have Z�
2l
� Z2 � Z2l�2 which is

the direct product of two cyclic groups. We do not prove this fact but it is not difficult.

32



3.2. The case of odd prime powers and the general case. We first show that

primitive roots always exist for powers of odd primes. After that we wrap up and give a

list of all values of m ¥ 2 which possess primitive roots.

Proposition 3.8. Let p be an odd prime and l ¥ 2 an integer. Then Z�
pl

is cyclic; i.e.

there exist primitive roots modulo pl.

Proof. We prove the result in three steps. We first produce a candidate, then prove that

it is indeed a primitive root modulo pl.

Step 1. By Corollary 3.5, we assume g is a primitive root modulo p. Then we have

gp�1 � 1 pmod pq. We claim that we can choose g such that gp�1 � 1 pmod p2q.
In fact, if g satisfies gp�1 � 1 pmod p2q, we can consider g � p, which is still a primitive

root modulo p. However we have

pg � pqp�1 � gp�1 � pp� 1qgp�2p pmod p2q
� 1� pp� 1qgp�2p pmod p2q
� 1 pmod p2q,

which shows that we can replace g by g � p and achieve our claim.

Step 2. By Step 1 we can write gp�1 � 1 � ap pmod p2q for some a P Z not divisible by

p. We claim that for each l ¥ 2, we similarly have

gφpp
l�1q � 1� a � pl�1 pmod plq. (3.1)

We prove it by induction on l. When l � 2, the claim follows from Step 1. Assume the

claim is true for some l ¥ 2, then we can write

gφpp
l�1q � 1� b � pl�1

for some b P Z with a � b pmod pq. Then

gφpp
lq � p1� b � pl�1qp � 1� b � pl �

p�1̧

i�2

�
p

i



bi � pipl�1q � bp � pppl�1q.

We know
�
p
i

�
is divisible p. (Indeed, we have p! � i!pp� iq!�p

i

�
by the definition of binomial

coefficients. The left-hand side is divisible by p, hence so is the right-hand side. But p

does not divide i!pp� iq! since it is a product of integers less than, and thus coprime to p.

Hence p divides
�
p
i

�
.) Therefore for each i ¥ 2, the corresponding term in the summation

is divisible by p1�ipl�1q, where 1 � ipl � 1q ¥ 1 � 2pl � 1q ¥ l � 1. The term after the

summation is divisible by pppl�1q, where ppl�1q ¥ 3pl�1q ¥ l�1 since p is an odd prime.

Also notice that the difference of a and b is a multiple of p. All this together implies

gφpp
lq � 1� a � pl pmod pl�1q. (3.2)
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Therefore the claim is true for l � 1.

Step 3. We show that for each l ¥ 2, the order of g modulo pl is φpplq; i.e. g is a primitive

root modulo pl.

Denote the order of g modulo pl by d. First of all, gd � 1 pmod plq implies gd � 1

pmod pq. Since we chose g to be a primitive root modulo p in Step 1, we know that φppq
divides d. Then by (3.2) we have gφpp

lq � 1 pmod plq, hence d divides φpplq. Finally by

(3.1) we have gφpp
l�1q � 1 pmod plq, hence d does not divide φppl�1q. These requirements

leave d � φpplq as the only possibility. �

Remark 3.9. Notice that Steps 2 and 3 in the proof actually shows that: if g is a primitive

root modulo p and gp�1 � 1 pmod p2q, then g is a primitive root modulo pl for any integer

l ¥ 2. This sufficient condition will be handy in looking for primitive roots modulo higher

powers of odd primes; see Exercise 3.1 for an example. In fact, this condition is also

necessary; see Exercise 3.4.

Finally we put all our existing results together and get:

Theorem 3.10. An integer m ¥ 2 possesses primitive roots iff m is of the form 2, 4, pk

or 2pk, where p is an odd prime and k is a positive integer.

Proof. This proof is not covered in lecture and is non-examinable.

We first show that m possesses primitive roots if it has one of the given forms. We already

know this for 2, 4 and pk. In the last case, by Remark 2.20 we have

Z�
2pk � Z�

2 � Z�
pk � Z�

pk ,

it follows that Z�
2pk

is cyclic; i.e. 2pk possesses primitive roots.

We then show that n does not possess primitive roots in all other cases. We already know

this for m � 2l with l ¥ 3, so we can now assume m is not a power of 2.

We claim that m can be written as a product m1m2, where m1 and m2 are coprime,

m1 ¡ 2 and m2 ¡ 2. Indeed, assume m � 2apa11 p
a2
2 � � � pall is the prime factorisation of m,

where p1, p2, � � � , pl are distinct odd primes, a ¥ 0 and ai ¥ 1 for each i. If l ¥ 2, then we

can take m1 � pa11 and m2 � 2apa22 � � � pall . Otherwise l � 1, hence by assumption a ¥ 2,

then we can take m1 � 2a and m2 � pa11 .

We then have that φpm1q and φpm2q are both even by Exercise 1.2 and that Z�
m �

Z�
m1

� Z�
m2

by Remark 2.20. Since every group of even order has an element of order 2,

both factors have elements of order 2, which implies that Z�
m has at least two elements

of order 2. Therefore it is not cyclic since a cyclic group contains at most one element of

order 2. Thus m does not possess primitive roots. �
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Exercise Sheet 3

This sheet is due in the lecture on Tuesday 21st October, and will be discussed in the

exercise class on Friday 24th October.

Exercise 3.1. Examples of primitive roots.

(1) Show that 2 is a primitive root modulo 29. How many generators does Z�
29 have?

(2) Show that 2 is a primitive root modulo 1331 � 113. How many generators does

Z�
1331 have? (Hint: Remark 3.9.)

(3) Find all primitive roots modulo 10, 11 and 12 respectively, if there is any.

Exercise 3.2. Applications in solving non-linear equations.

Let p be an odd prime and g a primitive root modulo p.

(1) For any d � pp� 1q, show that g
p�1
d has order d modulo p.

(2) Show that g
p�1
2 � �1 pmod pq.

(3) Use the primitive root in Exercise 3.1 (1) to find all solutions to x7 � 1 pmod 29q.
Exercise 3.3. Applications in higher order residues.

Let p be an odd prime and g a primitive root modulo p. Assume d � pp� 1q and p � a.

(1) Show that xd � a pmod pq has solutions iff a � gdk pmod pq for some k P Z.

(2) Show that xd � a pmod pq has solutions iff a
p�1
d � 1 pmod pq.

(3) Find all values of a with 0   a   29 such that x4 � a pmod 29q has solutions.

(Hint: you can use Exercise 3.1 (1) or Exercise 3.2 (3).)

Exercise 3.4. Characterisation of primitive roots modulo higher powers of odd primes.

Let p be an odd prime.

(1) For any positive integer l, if a � b pmod plq, show that ap � bp pmod pl�1q. (Hint:

write a � b� c � pl for some c P Z and compute ap.)

(2) For any positive integers m   n, if g is a primitive root modulo pn, show that g is

a primitive root modulo pm. (Hint: prove by contradiction and use part (1).)

(3) For any integer l ¥ 2, conclude that a necessary and sufficient condition for g being

a primitive root modulo pl is that g is a primitive root modulo p and gp�1 � 1

pmod p2q. (Hint: use part (2) to prove necessity. Sufficiency has been proved in

Proposition 3.8; see Remark 3.9.)
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Solutions to Exercise Sheet 3

Solution 3.1. Examples of primitive roots.

(1) Since the group Z�
29 has φp29q � 28 elements, we need to show that 2 has order

28 modulo 29. All positive divisors of 28 are 1, 2, 4, 7, 14 and 28. Since the order

of 2 must be a positive divisor of 28, it suffices to show that 2k � 1 pmod 29q
for k � 1, 2, 4, 7, 14. This can be done by direct computation. 21 � 2 pmod 29q,
22 � 4 pmod 29q, 24 � 16 pmod 29q, 27 � 128 � 12 pmod 29q, 214 � 122 � 144 �
28 � �1 pmod 29q. None of these remainders is 1 pmod 29q, hence the order of

2 must be 28. In other words, 2 is a primitive root modulo 29. The number of

generators of Z�
29 is φp28q � 28p1� 1

2
qp1� 1

7
q � 12.

(2) By Remark 3.9, it suffices to show that 2 is a primitive root modulo 11 and the

condition 210 � 1 pmod 112q. To show 2 is a primitive root modulo 11, we need to

show 2 has order 10 modulo 11. In other words, its order is not 1, 2 or 5. Indeed,

21 � 2 pmod 11q, 22 � 4 pmod 11q, 25 � 32 � 10 pmod 11q. None of them is

congruent to 1 modulo 29, hence 2 is a primitive root modulo 11. To show the

second condition 210 � 1 pmod 112q, we simply compute 210 � 1024 � 56 � 1

pmod 121q. Hence 2 is a primitive root modulo 113. The number of generators in

Z�
113 is given by φpφp113qq � φp10� 112q � 440.

(3) We consider primitive roots modulo 10. We have φp10q � 4 and we can even

write down Z�
10 � t1, 3, 7, 9u. We show 3 is a primitive root (in other words 3 is

a generator of Z�
10). Indeed, 3 � 3 pmod 10q, 32 � 9 pmod 10q, so the order of 3

modulo 10 is not 1 or 2, hence must be 4. By Remark 3.2 (3), the generators of

Z�
10 are 3 and 3

3 � 27 � 7. Hence a P Z is a primitive root modulo 10 iff a � 3 or

7 pmod 10q.
We consider primitive roots modulo 11. We have found in part (2) that 2

is a primitive root modulo 11. By Remark 3.2 (3), we need to compute the

congruence classes of 2k modulo 11, where 1 ¤ k ¤ 10 and hcfpk, 10q � 1; i.e.,

k � 1, 3, 7, 9. So we have 21 � 2 pmod 11q, 23 � 8 pmod 11q, 27 � 128 � 7

pmod 11q, 29 � 7 � 4 � 6 pmod 11q. Therefore a P Z is a primitive root modulo

11 iff a � 2, 6, 7 or 8 pmod 11q.
We finally consider primitive roots modulo 12. We have the factorisation 12 �

22 � 3. We compare it with the list of forms in Theorem 3.10, but it does not

match any of the given forms. Therefore there are no primitive roots modulo 12.

Solution 3.2. Applications in solving non-linear equations.

(1) Since g is a primitive root modulo p, we know that the order of g modulo p is

φppq � p � 1. In other words, gp�1 � 1 pmod pq and gl � 1 pmod pq for any
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1 ¤ l   p � 1. Let a � g
p�1
d . We want to show a has order d. In other words,

ad � 1 pmod pq and ak � 1 pmod pq for any 1 ¤ k   d� 1.

On one hand, ad � gp�1 � 1 pmod pq. On the other hand, for any k with

1 ¤ k   d, ak � gk�
p�1
d pmod pq. Since 0   k � p�1

d
  p � 1, ak � 1 pmod pq.

Therefore we conclude a has order d modulo p.

(2) Let b � g
p�1
2 . By part (1) we know b has order 2 modulo p. In other words, b2 � 1

pmod pq and b � 1 pmod pq. The first condition implies p � pb2�1q � pb�1qpb�1q,
hence either p � b�1 or p � b�1, or equivalently, b � �1 pmod pq or b � 1 pmod pq.
The second condition rules out the second possibility. Hence g

p�1
2 � b � �1

pmod pq is the only possibility.

(3) Let g � 2 be the primitive root modulo 29 found in Exercise 3.1 (1), then g28 � 1

pmod 29q. Therefore for any k P Z, x � g4k pmod 29q is a solution to the equation

x7 � 1 pmod 29q because pg4kq7 � g28k � 1k � 1 pmod 29q. In particular, the

congruence classes of g4k for 0 ¤ k ¤ 6 are distinct solutions because g has order

28 modulo 29 (indeed, the congruence classes of gl for 0 ¤ l   28 modulo 29

are all distinct). On the other hand, since Z29 is a field by Proposition 2.9, the

equation x7 � 1 has at most 7 distinct solutions in Z29; in other words, at most

7 distinct congruence classes. Therefore x � g4k pmod 29q for 0 ¤ k ¤ 6 are all

solutions. We do explicit computation: 20 � 1 pmod 29q, 24 � 16 pmod 29q, 28 �
162 � 24 � �5 pmod 29q, 212 � 2428 � 16 � p�5q � 7 pmod 29q, 216 � p28q2 �
p�5q2 � 25 � �4 pmod 29q, 220 � 24216 � 16 � p�4q � 23 � �6 pmod 29q,
224 � p212q2 � 72 � 20 pmod 29q. Therefore all solutions to the equation x7 � 1

pmod 29q are x � 1, 16, 24, 7, 25, 23 or 20 pmod 29q.

Solution 3.3. Applications in higher order residues.

(1) For the “if” part, we assume a � gdk pmod pq. Then x � gk pmod pq is clearly

a solution to xd � a pmod pq. For the “only if” part, assume xd � a pmod pq
has a solution x � x0 pmod pq. Then p � x0 because xd0 � a pmod pq and p � a.

Therefore x0 is an element in Z�
p hence x0 � gk pmod pq for some k P Z (because

g is a generator of Z�
p). Therefore a � xd0 � gdk pmod pq.

(2) By part (1), it suffices to show that a � gdk pmod pq is equivalent to a
p�1
d � 1

pmod pq. We first assume a � gdk pmod pq. Then a
p�1
d � pgdkq p�1

d � gkpp�1q � 1

pmod pq since gp�1 � 1 pmod pq. For the other direction, since p � a, a P Z�
p .

Hence a � gl pmod pq for some l P Z. Then a
p�1
d � gl�

p�1
d � 1 pmod pq. Since g

has order p � 1 modulo p, we conclude that l � p�1
d

must be a multiple of p � 1.

(This uses a fact in group theory: assume an element g in a group G has order

q, then gr � e is the identity of the group iff q � r.) In other words, there exists
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some k P Z, such that l � p�1
d
� kpp � 1q. This simplifies to l � dk, hence a � gdk

pmod pq for some k P Z.

(3) We use the result from part (1). x4 � a mod 29 has solutions iff a � g4k

pmod 29q. We know from Exercise 3.1 (1) that g � 2 is a primitive root mod-

ulo 29. Therefore a � 24k pmod 29q for k P Z. For 0 ¤ k ¤ 6 the formula gives

distinct congruence classes. Therefore x4 � a pmod 29q has solutions iff a � 24k

for 0 ¤ k ¤ 6. To find the corresponding values of a within the range 0   a   29,

we need to find the remainder of each 24k modulo 29. This calculation has been

done in Exercise 3.3 (3); i.e. a � 1, 16, 24, 7, 25, 23 or 20.

Solution 3.4. Characterisation of primitive roots modulo higher powers of odd primes.

(1) Since a � b pmod plq, we can write a � b � c � pl for some c P Z. We then take

p-th power on both sides and expand the right-hand side. We get

ap � pb� c � plqp � bp � p � bp�1cpl �
p̧

i�2

�
p

i



bp�icipil.

We claim that every term on the right-hand side except bp is divisible by pl�1.

Indeed, the second term p � bp�1cpl is clearly divisible by pl�1. For every term in

the summation, the exponent in the power pil is at least il ¥ 2l � l � l ¥ l � 1,

hence pl�1 divides the term
�
p
i

�
bp�icipil for each i ¥ 2. Therefore, modulo pl�1, the

above equation can be written as ap � bp pmod pl�1q.
(2) We assume the order of g modulo pm is d. We need to show d � φppmq. It suffices

to prove that d � φppmq and φppmq � d. For the first division, notice that Z�
pm has

order φppmq, hence the order d of any element g is a positive divisor of φppmq; that

is d � φppmq. For the second division, we apply the statement in part (1) on the

congruence gd � 1 pmod pmq for n �m times. Step by step we will get gdp � 1

pmod pm�1q, gdp2 � 1 pmod pm�2q, � � � , gdpn�m � 1 pmod pnq. Since g has order

φppnq modulo pn, the last congruence implies φppnq � dpn�m. (This uses again the

fact in group theory: assume an element g in a group G has order q, then gr � e

is the identity of the group iff q � r.) Hence dpn�m � cφppnq � cpp � 1qpn�1 for

some c P Z. It follows that d � cpp � 1qpm�1 � cφppmq, hence φppmq � d which is

the second division. The two divisions guarantee d � φppmq.
(3) The sufficiency is stated in Remark 3.9 and proved in Proposition 3.8. We still

need to prove the necessity of the two given conditions. Since g is a primitive root

modulo pl, using the statement in part (2), we know g is a primitive root modulo

p and p2 because l ¥ 2, which prove the two conditions respectively. Indeed, the

first condition is clear. For the second condition, since g has order φpp2q modulo

p2, we know that for any integer d, 1 ¤ d   φpp2q, gd � 1 pmod p2q. In particular,

it holds for d � p� 1.
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4. Quadratic Residues

We study quadratic residues and non-residues. In this part we are mainly interested in

deciding whether a given integer a is a quadratic residue modulo an odd prime p. We will

introduce quadratic reciprocity, whose proof will be given in next part.

4.1. Quadratic residues and the Legendre symbol. First we recall the definition of

quadratic residues and non-residues.

Definition 4.1. For integers a and m, m � 0, hcfpa,mq � 1, a is called a quadratic

residue modulo m if the congruence x2 � a pmod mq has a solution. Otherwise a is

called a quadratic non-residue modulo m.

Given any fixed positive integer m, it is possible to determine the quadratic residues

by simply listing the positive integers less than and coprime to m, squaring them, and

reducing modulo m. But we prefer to have a more convenient way to determine whether

a given integer a coprime to m is a quadratic residue modulo m. At the moment we are

mostly interested in the case that m is an odd prime p. An example of a composite m

will be given in Exercise 5.3.

The Legendre symbol is a very simple yet powerful tool in studying this problem. Roughly

speaking, it is the indication function for quadratic residues. We recall its definition:

Definition 4.2. Let p be an odd prime. The Legendre symbol
� a
p

	
takes value 1 if a is

a quadratic residue modulo p, or �1 if a is a quadratic non-residue modulo p, or 0 if p

divides a.

Therefore the problem reduces to the computation of the Legendre symbol. There are a

series of rules which help with the computation. We introduce them in four groups.

The first group of properties are simple consequences of the definition.

Proposition 4.3. Let p be an odd prime.

(1) If a � b pmod pq, then
� a
p

	
�
� b
p

	
.

(2) If p � a, then
� a2

p

	
� 1.

Proof. Both statements are clear by definition. �

Next group of properties are more interesting. The proof essentially use the existence of

primitive roots.
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Proposition 4.4. Let p be an odd prime.

(1) (Euler’s criterion).
� a
p

	
� a

p�1
2 pmod pq.

(2)
� ab
p

	
�
� a
p

	� b
p

	
.

Proof. For (1), both sides are congruent to 0 if p � a. Now we assume p � a. Notice

that ap�1 � 1 pmod pq by Corollary 2.11. Hence pa p�1
2 � 1qpa p�1

2 � 1q � 0 pmod pq, so

a
p�1
2 � 1 or � 1 pmod pq.

If a is a quadratic residue modulo p, assume a � x2 pmod pq. Then p � x, and a
p�1
2 �

xp�1 � 1 pmod pq by Corollary 2.11 again. If a is a quadratic non-residue modulo p, it

suffices to show a
p�1
2 � 1 pmod pq. Let g be a primitive root modulo p, then a � gr

pmod pq for some r P Z. We observe that r must be odd, otherwise a � pg r
2 q2 pmod pq

is a quadratic residue. Hence we can write r � 2k � 1 for some k P Z. Then we have

a
p�1
2 � gp2k�1q� p�1

2 � gpp�1qk � g p�1
2 � g

p�1
2 � 1 pmod pq because the order of g modulo p is

p� 1.

For (2), by (1) we can get p ab
p
q � pabq p�1

2 � a
p�1
2 b

p�1
2 � p a

p
qp b

p
q pmod pq. Since both sides

can only take values in t�1, 0, 1u, they must be equal. �

We characterise those primes for which �1 or 2 is a quadratic residue by the follow

proposition. We remind the reader that if n is an odd integer, then n � 1 is always a

multiple of 2 and n2 � 1 is always a multiple of 8 (we have seen this fact in the proof of

Proposition 3.6).

Proposition 4.5. Let p be an odd prime.

(1)
� �1

p

	
� p�1q p�1

2 �
#

1 if p � 1 pmod 4q
�1 if p � �1 pmod 4q.

(2)
� 2

p

	
� p�1q p2�1

8 �
#

1 if p � �1 pmod 8q
�1 if p � �3 pmod 8q.

Proof. Part (1) follows immediately from of Proposition 4.4 (1). There are different ways

of proving part (2). We provide an elementary proof here. Consider the following p�1
2
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congruences

p� 1 � 1 � p�1q1 pmod pq
2 � 2 � p�1q2 pmod pq

p� 3 � 3 � p�1q3 pmod pq
...

p� 1

2
or p� p� 1

2
� p� 1

2
� p�1q p�1

2 pmod pq.

The pattern on the left-hand side: for every i � 1, 2, � � � , p�1
2

, we put i if i is even, or

p � i if i is odd. So the left-hand side of the above congruences has exhausted all even

numbers between 1 and p. We multiply all of the congruences together to get

2 � 4 � 6 � � � pp� 3q � pp� 1q �
�
p� 1

2



! � p�1q1�2����� p�1

2 pmod pq.

Therefore we have

2
p�1
2 �

�
p� 1

2



! �

�
p� 1

2



! � p�1q p2�1

8 pmod pq.

Since p does not divide
�
p�1

2

�
!, we can cancel it on both sides to get

2
p�1
2 � p�1q p2�1

8 pmod pq.
By Proposition 4.4 (1) we get � 2

p

	
� p�1q p2�1

8

since they both take values 1 or �1.

Finally, if p � �1 pmod 8q, then we can write p � 8k � 1 for some k P Z. Hence
p2�1

8
� 8k2 � 2k is an even number. If p � �3 pmod 8q, then we can write p � 8k � 3 for

some k P Z. Hence p2�1
8

� 8k2 � 6k � 1 is an odd number. This proves

p�1q p2�1
8 �

#
1 if p � �1 pmod 8q
�1 if p � �3 pmod 8q,

as desired. �

Finally, we state the law of quadratic reciprocity. This is a deep result which has great

influence in the modern number theory. The proof will be postponed to next part.

Theorem 4.6 (Law of Quadratic Reciprocity). Let p and q be distinct odd primes. Then� p
q

	� q
p

	
� p�1q p�1

2
� q�1

2 .
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Remark 4.7. We can state the quadratic reciprocity in a slightly different way: for odd

primes p and q, we have p q
p
q � �p p

q
q. We take the positive sign if either p or q is congruent

to 1 modulo 4, or the negative sign if both p and q are congruent to �1 modulo 4.

The law of quadratic reciprocity can be used in conjunction with the previous propositions

to compute the Legendre symbol. Very roughly speaking, given a Legendre symbol p a
p
q,

after replacing a by the remainder of a modulo p if possible, we use the prime factorisation

of a to write p a
p
q as the product of several Legendre symbols, some of which can be

immediately evaluated. Then we use the quadratic reciprocity for the other factors and

repeat this process. We give an example:

Example 4.8. We calculate p 79
101
q. Since 101 � 1 pmod 4q we have p 79

101
q � p 101

79
q � p 22

79
q.

Then we factor as p 22
79
q � p 2

79
qp 11

79
q. Now 79 � 7 pmod 8q, thus p 2

79
q � 1. Since both

11 and 79 are congruent to 3 modulo 4 we have p 11
79
q � �p 79

11
q � �p 2

11
q. Finally 11 � 3

pmod 8q implies that p 2
11
q � �1. Therefore p 79

101
q � 1; i.e. 79 is a quadratic residue modulo

101. Indeed, we can check 332 � 79 pmod 101q.
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4.2. The Jacobi symbol. The Legendre symbol p a
p
q indicates whether an integer a not

divisible by an odd prime p is a quadratic residue modulo p. We have seen how to use

quadratic reciprocity to compute it. However this requires to factor a into primes, which is

in general a hard problem when a is large. To make the computation easier, we introduce

the following generalisation of the Legendre symbol:

Definition 4.9. Let a be any integer and b be a positive odd integer. Let b � p1p2 � � � pm
be its prime factorisation, where p1, p2, � � � , pm are not necessarily distinct primes. The

symbol
� a
b

	
defined by � a

b

	
�
� a
p1

	� a
p2

	
� � �

� a

pm

	
is called the Jacobi symbol.

The notation for the Jacobi symbol is identical to that for the Legendre symbol. Indeed,

when b is an odd prime, the Jacobi symbol p a
b
q is precisely the corresponding Legendre

symbol by definition. Moreover, the Jacobi symbol has properties that are remarkably

similar to the Legendre symbol. However, we should also be aware of their difference.

We immediately point out some important differences between the two symbols before we

show their similarities.

Remark 4.10. We illustrate the following differences between the two symbols by examples.

(1) For p a
b
q, as a Legendre symbol we require that b is a positive odd prime, while as

a Jacobi symbol we only require that b is a positive odd integer. So p 6
11
q can be

interpreted either as a Legendre symbol or a Jacobi symbol, while p 14
45
q must be a

Jacobi symbol.

(2) The Jacobi symbol is in general not an indicator for quadratic residues. That is,

p a
b
q may equal 1 without a being a quadratic residue modulo b. For example,

p 2
15
q � p 2

3
qp 2

5
q � p�1qp�1q � 1, but 2 is not a quadratic residue modulo 15,

because if x2 � 2 pmod 15q has a solution, then the same integer value of x is

a solution to x2 � 2 pmod 3q, which is impossible. It is true, however, that if

p a
b
q � �1, then a is a quadratic non-residue modulo b; see Exercise 4.3 (1).

(3) In comparison to Proposition 4.4 (1), p a
b
q and a

b�1
2 are in general not congruent

modulo b in case of the Jacobi symbol. For example, p 2
15
q � 2

15�1
2 pmod 15q

because p 2
15
q � 1 while 27 � 8 pmod 15q.

Now we turn to the properties of the Jacobi symbol. Apart from what was mentioned

above, most of the properties of the Jacobi symbol are extremely similar to those of the

Legendre symbol. As a result, the computation of Jacobi symbols are also very similar to

that of Legendre symbols, even easier.
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The basic idea behind all their proofs is to use the definition to rewrite everything in

terms of the Legendre symbol and apply the corresponding properties of the Legendre

symbol. We list all the properties and prove only the first one as a sample of the proofs.

One more proof will be left as an exercise for you to try yourself; see Exercise 4.3 (2).

Proposition 4.11. Let b be a positive odd integer.

(1) If a1 � a2 pmod bq, then
� a1

b

	
�
� a2

b

	
.

(2) If hcfpa, bq � 1, then
� a2

b

	
� 1.

Proof. Both statements are consequences of Definition 4.9 and Proposition 4.3. We assume

b � p1p2 � � � pm is the prime factorisation of b, where p1, p2, � � � , pm are not necessarily

distinct primes. For (1), by definition and Proposition 4.3 (1) we have� a1

b

	
�
� a1

p1

	� a1

p2

	
� � �

� a1

pm

	
�
� a2

p1

	� a2

p2

	
� � �

� a2

pm

	
�
� a2

b

	
.

For (2), since pi � a for each i, by definition and Proposition 4.3 (2) we have� a2

b

	
�
� a2

p1

	� a2

p2

	
� � �

� a2

pm

	
� 1.

�

Proposition 4.12. Let b, b1, b2 be positive odd integers.

(1)
� a1a2

b

	
�
� a1

b

	� a2

b

	
.

(2)
� a

b1b2

	
�
� a
b1

	� a
b2

	
.

Proposition 4.13. Let b be a positive odd integer.

(1)
� �1

b

	
� p�1q b�1

2 �
#

1 if b � 1 pmod 4q
�1 if b � �1 pmod 4q.

(2)
� 2

b

	
� p�1q b2�1

8 �
#

1 if b � �1 pmod 8q
�1 if b � �3 pmod 8q.

Proposition 4.14 (Quadratic Reciprocity for the Jacobi symbol). Let a, b be coprime

positive odd integers. Then � a
b

	� b
a

	
� p�1qa�1

2
� b�1

2 .

The Jacobi symbol is very useful. We are mainly interested in using it to calculate

Legendre symbols. Roughly speaking, aside from pulling out factors of �1 and 2 as they

arise, one can proceed with quadratic reciprocity without worrying about whether or not

the numerator is a prime. We show the procedure in the following example.
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Example 4.15. Given 1151 is a prime, we compare the two calculations for the Legendre

symbol p 1003
1151

q.
Without using the Jacobi symbol, we need to factor the numerator 1003 � 17 � 59 (it

takes some effort to get this!). Hence p 1003
1151

q � p 17
1151

qp 59
1151

q. Since 17 is congruent to

1 modulo 4, we have p 17
1151

q � p 1151
17

q � p 12
17
q � p 4

17
qp 3

17
q � p 3

17
q. By the same reason

p 3
17
q � p 17

3
q � p 2

3
q � �1. On the other hand since both 59 and 1151 are congruent to

�1 modulo 4, we have p 59
1151

q � �p 1151
59

q � �p 30
59
q � �p 2

59
qp 3

59
qp 5

59
q. Since 59 � 3 pmod 8q

we get p 2
59
q � �1. Since 3 � 59 � �1 pmod 4q we get p 3

59
q � �p 59

3
q � �p 2

3
q � 1. Since

5 � 1 pmod 4q we get p 5
59
q � p 59

5
q � p 4

5
q � 1. All this together shows p 59

1151
q � �1.

Using the Jacobi symbol, we can avoid the prime factorisation, so the calculation is much

simpler. Since 1003 and 1151 are both congruent to�1 modulo 4, the quadratic reciprocity

gives p 1003
1151

q � �p 1151
1003

q � �p 148
1003

q � �p 4
1003

qp 37
1003

q � �p 37
1003

q. Since 37 � 1 pmod 4q, we

have p 37
1003

q � p 1003
37

q � p 4
37
q � 1. Hence p 1003

1151
q � �1. Works like a charm!

Now we switch gears and discuss a more significant application of the Legendre and Jacobi

symbols. From Proposition 4.5 we noticed that �1 is a quadratic residue for primes of

the form 4k� 1 and that 2 is a quadratic residue for primes of the form 8k� 1. If a is an

arbitrary integer, for what odd primes p is a a quadratic residue modulo p? We illustrate

this type of questions using the following example.

Example 4.16. To find all odd primes p for which 3 is a quadratic residue, we need to

compute p 3
p
q for all p � 3. To apply quadratic reciprocity, we need to consider two cases.

If p � 1 pmod 4q, then p 3
p
q � p p

3
q, which is 1 if p � 1 pmod 3q, or �1 if p � 2 pmod 3q.

We can solve the system of the congruences modulo 3 and 4 to obtain: p p
3
q � 1 if p � 1

pmod 12q, or �1 if p � 5 pmod 12q. (Please fill in the details of the computation.)

On the other hand, if p � 3 pmod 4q, then p 3
p
q � �p p

3
q. Still, p p

3
q � 1 if p � 1 pmod 3q,

or �1 if p � 2 pmod 3q. We can solve the system of the congruences modulo 3 and 4 to

obtain: p p
3
q � 1 if p � 7 pmod 12q, or �1 if p � 11 pmod 12q. (Please fill in the details

of the computation.)

p � 1 pmod 4q p � 3 pmod 4q
p � 1 pmod 3q p 3

p
q � 1, p � 1 pmod 12q p 3

p
q � �1, p � 7 pmod 12q

p � 2 pmod 3q p 3
p
q � �1, p � 5 pmod 12q p 3

p
q � 1, p � 11 pmod 12q

Summarising the above results, we get� 3

p

	
�
#

1 if p � 1 or 11 pmod 12q
�1 if p � 5 or 7 pmod 12q.

In other words, 3 is a quadratic residue for an odd prime p iff p � �1 pmod 12q.
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Exercise Sheet 4

This sheet is due in the lecture on Tuesday 28th October, and will be discussed in the

exercise class on Friday 31st October.

Exercise 4.1. Computation of the Legendre symbol.

(1) Evaluate the Legendre symbol p 474
733

q without using the Jacobi symbol.

(2) Evaluate the Legendre symbol p �113
997

q.
(3) Evaluate the Legendre symbol p 514

1093
q.

Exercise 4.2. Primes for which a given number is a quadratic residue.

(1) Find all odd primes for which 5 is a quadratic residue.

(2) Find all odd primes for which �3 is a quadratic residue.

Exercise 4.3. Properties of Jacobi symbols.

(1) Let b be a positive odd integer and hcfpa, bq � 1. If a is a quadratic residue modulo

b, show that the Jacobi symbol p a
b
q � 1.

(2) Use Definition 4.9 and Proposition 4.4 (1) to give a proof of Proposition 4.12 (1);

i.e. for any positive odd integer b, show that� a1a2

b

	
�
� a1

b

	� a2

b

	
.

Exercise 4.4. Quadratic residues and the Legendre symbol.

(1) Find all quadratic residues and non-residues modulo 13.

(2) Let p be an odd prime and a any integer. Show that the number of solutions to

the congruence x2 � a pmod pq is given by 1� p a
p
q.

(3) Use part (2) to show that
p�1̧

a�0

� a
p

	
� 0. (Hint: each congruence class modulo p is

a solution to x2 � a pmod pq for a unique a P t0, 1, � � � , p� 1u.)
(4) Use part (3) to show that, in the set t1, 2, � � � , p�1u, there are as many quadratic

residues as non-residues modulo p. Is your answer to part (1) consistent with this

result?
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Solutions to Exercise Sheet 4

Solution 4.1. Computation of the Legendre symbol.

(1) We factor 474 into primes as 474 � 2� 3� 79. Hence p 474
733

q � p 2
733
qp 3

733
qp 79

733
q. We

have p 2
733
q � �1 since 733 � 5 pmod 8q. We use quadratic reciprocity to compute

the other two factors. Notice that 733 � 1 pmod 4q, therefore p 3
733
q � p 733

3
q �

p 1
3
q � 1. For the same reason we have p 79

733
q � p 733

79
q � p 22

79
q � p 2

79
qp 11

79
q. Since

79 � �1 pmod 8q we have p 2
79
q � 1. Since 11 � 79 � 3 pmod 8q, by quadratic

reciprocity we get p 11
79
q � �p 79

11
q � �p 2

11
q � 1, where the last equality is due to

11 � 3 pmod 8q. Hence we have p 79
733
q � 1. It follows that p 474

733
q � p�1q � 1� 1 �

�1.

(2) The computation is always easier if we use Jacobi symbols. We just need to

remember pulling out �1 and 2 from the numerators.

In this problem we have p �113
997

q � p �1
997
qp 113

997
q. The first factor p �1

997
q � 1 since

997 � 1 pmod 4q. The second factor p 113
997

q � p 997
113

q by quadratic reciprocity since

113 � 1 pmod 4q (or 997 � 1 pmod 4q). Then p 997
113

q � p 93
113
q � p 113

93
q � p 20

93
q �

p 4
93
qp 5

93
q � p 5

93
q � p 93

5
q � p 3

5
q � p 5

3
q � p 2

3
q � �1, where the second, sixth and

eighth equalities are consequences of quadratic reciprocity since 113 � 1 pmod 4q
and 5 � 1 pmod 4q. Finally we conclude p �113

997
q � �1.

(3) For this one we have p 514
1093

q � p 2
1093

qp 257
1093

q. Since 1093 � 5 pmod 8q we get p 2
1093

q �
�1. Realising 257 � 1 pmod 4q and using quadratic reciprocity, we have p 257

1093
q �

p 1093
257

q � p 65
257
q � p 257

65
q � p 62

65
q. At this point we can of course factor 62 and do the

computation as usual. But there is a shortcut. We write p 62
65
q � p �3

65
q � p �1

65
qp 3

65
q.

Since 65 � 1 pmod 4q, we have p �1
65
q � 1, and by quadratic reciprocity p 3

65
q �

p 65
3
q � p 2

3
q � �1. Finally we conclude that p 514

1093
q � p�1q � p�1q � 1.

Solution 4.2. Primes for which a given number is a quadratic residue.

(1) To find all the odd primes p for which 5 is a quadratic residue, we need to compute

p 5
p
q for any odd prime p � 5 (because p has to be coprime with 5 for being a

quadratic residue). Since 5 � 1 pmod 4q, p 5
p
q � p p

5
q. By direct computation we

know that p 1
5
q � p 4

5
q � 1, p 2

5
q � �1 and p 3

5
q � p 5

3
q � p 2

3
q � �1. Hence

� 5

p

	
�
#

1 if p � 1 or 4 pmod 5q
�1 if p � 2 or 3 pmod 5q.

In other words, 5 is a quadratic residue modulo an odd prime p iff p � �1 pmod 5q.
(2) Let p be an odd prime and p � 3 (because p has to be coprime with �3). We

compute p �3
p
q. We know p �3

p
q � p �1

p
qp 3

p
q. The first factor p �1

p
q � 1 if p � 1

pmod 4q and �1 if p � 3 pmod 4q. We apply quadratic reciprocity for the second
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factor; i.e. p 3
p
q � p p

3
q if p � 1 pmod 4q and �p p

3
q if p � 3 pmod 4q. No matter

whether p � 1 or 3 pmod 4q, we always have p �3
p
q � p p

3
q. Since p 1

3
q � 1 and

p 2
3
q � �1, we have

� �3

p

	
�
#

1 if p � 1 pmod 3q
�1 if p � 2 pmod 3q.

In other words, �3 is a quadratic residue modulo an odd prime p iff p � 1 pmod 3q.
Solution 4.3. Properties of Jacobi symbols.

(1) Let b � p1p2 � � � pm be its prime factorisation, where p1, p2, � � � , pm are not neces-

sarily distinct. Since a is a quadratic residue modulo b, there exists some integer

x P Z, such that x2 � a pmod bq. It follows that x2 � a pmod piq for each

i � 1, 2, � � � ,m. Since hcfpa, bq � 1, we know pi � a, therefore a is a quadratic

residue modulo pi for each i � 1, 2, � � � ,m. By Definition 4.2, p a
pi
q � 1 for each i,

hence by Definition 4.9, we have p a
b
q � p a

p1
qp a
p2
q � � � p a

pm
q � 1.

(2) Let b � p1p2 � � � pm be its prime factorisation, where p1, p2, � � � , pm are not neces-

sarily distinct primes. By Definition 4.9 and Proposition 4.4 (2) we have� a1a2

b

	
�
� a1a2

p1

	
� � �

� a1a2

pm

	
�
� a1

p1

	� a2

p1

	
� � �

� a1

pm

	� a2

pm

	
� a1

b

	� a2

b

	
�
� a1

p1

	
� � �

� a1

pm

	
�
� a2

p1

	
� � �

� a2

pm

	
.

The right-hand sides of the above two equations are products of the same factors

(although in different orders), Hence they are equal. It follows that the left-hand

sides of these two equations are also equal.

Solution 4.4. Quadratic residues and the Legendre symbol.

(1) We do it in the most naive way. We could try to compute the square of all

integers from 1 to 12 to get all quadratic residues modulo 13. In fact we only need

to compute the first six of them, because for every k P Z, 1 ¤ k ¤ 6, we have

13�k � �k pmod 13q, hence p13�kq2 � k2 pmod 13q. In other words, the square

of any integer between 7 and 12 would not produce any new congruence class. The

squares of 1, 2, 3, 4, 5, 6 are 1, 4, 9, 16, 25, 36, which reduce to 1, 4, 9, 3, 12, 10 modulo

13. So a is a quadratic residue modulo 13 iff a � 1, 3, 4, 9, 10 or 12 pmod 13q, and

a quadratic non-residue modulo 13 iff a � 2, 5, 6, 7, 8 or 11 pmod 13q.
(2) Recall that a solution to such a congruence equation is a congruence class modulo

p. There are three cases. If p � a, then the congruence equation becomes x2 � 0

pmod pq. It follows that p � x and x � 0 pmod pq is the only solution to the

equation. In this case we do have p a
p
q � 1 � 1 which is the number of solutions.
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If a is a quadratic residue modulo p, then there exists some x0 P Z such that x2
0 �

a pmod pq. Since p � a, we also have p � x0. We claim that the congruence x2 � a

pmod pq has two solutions, which are given by x � x0 pmod pq and x � �x0

pmod pq. Obviously both are solutions to the congruence equation. They must be

distinct. Indeed, if they were the same solution, then x0 � �x0 pmod pq, hence

2x0 � 0 pmod pq. Since p is an odd prime, this implies p � x0. Contradiction.

Therefore we have found two solutions to the congruence equation x2 � a pmod pq.
We can interpret this congruence as an equation x2 � a in Zp. Since Zp is a field

by Proposition 2.9, this equation has at most two solutions by Lemma 3.3. Hence

we have found all solutions. In this case, p a
p
q � 1 � 2 which is indeed the number

of solutions.

If a is a quadratic non-residue modulo p, then there is no solution to the con-

gruence x2 � a pmod pq. And we do have p a
p
q � 1 � 0 in this case. We proved

our result in all three possible cases.

(3) We consider the congruence equations x2 � a pmod pq for a � 0, 1, � � � , p � 1.

There are p equations in total. The sum of numbers of solutions to these p equa-

tions is given by
°p�1
a�0pp ap q � 1q.

On the other hand, every congruence class modulo p is precisely a solution to

one of these equations. (In other words, for every 0 ¤ x0 ¤ p� 1, the congruence

class x � x0 pmod pq is a solution to the unique congruence equation x2 � a

pmod pq for a being the residue of x2
0 modulo p.) Therefore the sum of numbers

of solutions to all p congruence equations is p.

It follows that
°p�1
a�0pp ap q � 1q � p. The left-hand side is

°p�1
a�0p ap q � p, hence we

conclude that
°p�1
a�0p ap q � 0.

(4) We look at the left-hand side of the equation
°p�1
a�0p ap q � 0. For a � 0, we have

p a
p
q � 0. For all other values of a, p a

p
q � �1. Since they add up to 0, there should

be the same number of 1’s and �1’s. In other words, in the set t1, 2, � � � , p � 1u,
there are the same number of quadratic residues and non-residues.

The answer to part (1) is consistent with this conclusion, because among all

positive integers less than 13, we found 6 quadratic residues modulo 13 and 6

quadratic non-residues.
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5. Quadratic Reciprocity

We introduce yet another way of computing Legendre symbol due to Gauss and give a

proof of the law of quadratic reciprocity.

5.1. Gauss’ lemma. For any odd prime p and any integer a not divisible by p, Euler’s

criterion Proposition 4.4 (1) gives a characterisation of the Legendre symbol. Next we

introduce another characterisation of the Legendre symbol due to Gauss, usually named

as Gauss’ lemma.

For simplicity we write r � p�1
2

. We consider the set

S � t�r,�pr � 1q, � � � ,�2,�1, 1, 2, � � � , r � 1, ru.
Any integer n not divisible by p is congruent to one element in S, which is called the least

residue of n modulo p. If p � a, let µ be the number of integers among a, 2a, � � � , ra which

have negative least residues modulo p. For example, let p � 7 and a � 4. Then r � 3,

and the residues of 1 � 4, 2 � 4, 3 � 4 are �3, 1,�2 respectively. Thus in this case µ � 2.

Gauss’ lemma is the following very simple yet very powerful result:

Lemma 5.1 (Gauss’ Lemma). Let p be an odd prime, r � p�1
2

, p � a, and µ the number of

integers among a, 2a, � � � , ra which have negative least residues modulo p. Then
� a
p

	
�

p�1qµ.

Proof. Let ml or �ml be the least residue of la modulo p, where ml is positive. As l

ranges between 1 and r, µ is clearly the number of minus signs that occur in this way.

We claim that ml � mk for any l � k and 1 ¤ l, k ¤ r. For, if ml � mk, then la � �ka
pmod pq, and since p � a this implies that l � k � 0 pmod pq. The latter congruence is

impossible since l � k and |l � k| ¤ |l| � |k| ¤ p� 1. It follows that the sets t1, 2, � � � , ru
and tm1,m2, � � � ,mru coincide. Multiply the congruences

1 � a � �m1 pmod pq,
2 � a � �m2 pmod pq,

...,

r � a � �mr pmod pq.
Notice that the number of negative signs on the right hand sides is µ, we obtain

r! � ar � p�1qµ � r! pmod pq.
Since p � r!, this yields

ar � p�1qµ pmod pq.
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By Euler’s criterion ar � a
p�1
2 � p a

p
q pmod pq and the result follows. �

We use Gauss’ lemma to give another characterisation of the Legendre symbol, which will

be used in the proof of quadratic reciprocity.

For later convenience, we introduce the so-called floor function. For any real number

x, we define the symbol rxs to be the largest integer less than or equal to x, which is

sometimes also called the integral part of x. But pay attention when x is negative. For

example, r3s � r3.2s � 3, r�3s � �3 but r�3.2s � �4.

If a, b P Z and b � 0, we know that there is a unique way to write a � bq � c for some

q, c P Z and 0 ¤ c   |b|, where q is called the quotient and c is called the remainder (or

Euclidean residue). If we assume b ¡ 0, then q is the integral part of the fraction a
b
; i.e.�

a
b

� � q. In other words we can write a � b
�
a
b

�� c.

Lemma 5.2. Let p be an odd prime, a an odd integer not divisible by p. Let

t �
p�1
2̧

l�1

�
la

p

�
.

Then
� a
p

	
� p�1qt.

Proof. For simplicity we write r � p�1
2

. For each l � 1, 2, � � � , r, we can write

la � p

�
la

p

�
� cl,

where 0 ¤ cl ¤ p� 1. We take the sum of the l equations and get

a �
ŗ

l�1

l � pt�
ŗ

l�1

cl. (5.1)

Recall we wrote �ml for the least residue in the proof of Lemma 5.1. It is clear that

cl �
#
ml if the sign in front of ml is positive;

�ml � p if the sign in front of ml is negative.

Modulo 2 we get

cl �
#
ml pmod 2q if the sign in front of ml is positive;

ml � p pmod 2q if the sign in front of ml is negative.

Now we take the sum of the l congruences and keep in mind that the negative sign in

front of ml appears exactly µ times:
ŗ

l�1

cl �
ŗ

l�1

ml � pµ pmod 2q.
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We also know that tm1,m2, � � � ,mru is simply a permutation of t1, 2, � � � , ru, hence
ŗ

l�1

cl �
ŗ

l�1

l � pµ pmod 2q. (5.2)

Now we use (5.2) to rewrite (5.1) as

a �
ŗ

l�1

l � pt�
ŗ

l�1

l � pµ pmod 2q.

Since a is odd, we get pt�pµ � 0 pmod 2q. Since p is also odd, we get t�µ � 0 pmod 2q;
that is t � µ pmod 2q. By Lemma 5.1 we have� a

p

	
� p�1qµ � p�1qt,

as desired. �
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5.2. A proof of quadratic reciprocity. The law of quadratic reciprocity is so funda-

mentally important that many people tried to prove it in different ways. Gauss gave the

first proof in 1796 and found eight separate proofs in his life. There are over a hundred

now in existence. In these proofs, a lot of new techniques were developed which have

become standard in modern number theory. Here we present an elementary but ingenious

proof due to Gauss. It relies on a clever geometric observation which we explain now.

Lemma 5.3. Let p and q be distinct odd primes. Then

p�1
2̧

l�1

�
lq

p

�
�

q�1
2̧

k�1

�
kp

q

�
� p� 1

2
� q � 1

2
. (5.3)

Proof. For simplicity we write r � p�1
2

and s � q�1
2

. In the px, yq-plane, we consider

the number of integral points in the interior of the rectangle with four vertices at p0, 0q,
pp

2
, 0q, pp

2
, q

2
q and p0, q

2
q. Any such integral point is given by a pair of integers px, yq with

1 ¤ x ¤ r and 1 ¤ y ¤ s. Therefore the number of such integral points is rs, which is the

right-hand side of (5.3).

We want to count the number of integral points in a different way to obtain the left

hand side of (5.3). We connect the points p0, 0q and pp
2
, q

2
q by a line segment to cut the

rectangle into two triangles. We notice that there is no interior integral point lying on

this line segment. Indeed, if there is an interior integral point px, yq on this line segment,

then we will have qx � py, which implies p � x, contradicting the requirement 1 ¤ x ¤ r.

Hence any integral point in the interior of the rectangle lies in the interior of one of the

triangles.

We count the number of interior integral points in the triangle with vertices at p0, 0q,
pp

2
, 0q and pp

2
, q

2
q. For each l � 1, 2, � � � , r, we fix x � l and think how many integral points

of the form pl, yq lie in the interior this triangle. The intersection of the vertical line

x � l and the diagonal of the rectangle is the point pl, lq
p
q. We find that y can only take

positive integral values not larger than lq
p

, hence has
�
lq
p

�
choices. Therefore the number

of integral points in the whole triangle is given by
°r
l�1

�
lq
p

�
. Similarly, the number of

integral points in the other triangle is given by
°s
k�1

�
kp
q

�
. They add up to the left-hand

side of (5.3). �

Finally we explain why the above lemmas prove the quadratic reciprocity.
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Proof of the Law of Quadratic Reciprocity. For distinct odd primes p and q, by Lemma

5.2 we can write � p
q

	� q
p

	
� p�1q

° p�1
2

l�1 r lqp s � p�1q
° q�1

2
k�1 r kpq s

� p�1q
° p�1

2
l�1 r lqp s�°

q�1
2

k�1 r kpq s

� p�1q p�1
2
� q�1

2 ,

where the last equality follows from Lemma 5.3. �

To close this topic, we show how quadratic residues can help to give a refinement of

Theorem 1.15 on infinitely many primes. The following results are special cases of the

so-called Dirichlet’s theorem.

Proposition 5.4. The following statements hold

(1) There are infinitely many primes which are congruent to �1 modulo 4.

(2) There are infinitely many primes which are congruent to 1 modulo 4.

Proof. We follow the idea in the proof of Theorem 1.15.

For (1), we assume by contradiction that the set of all primes congruent to �1 modulo

4 is finite, say, S � tp1, p2, � � � , pnu. Then we consider N � 4p1p2 � � � pn � 1. Obviously

pi � N for each i. Let p be any prime factor of N . Then p R S hence p � 1 pmod 4q. This

implies N is the product of primes which are all congruent to 1 modulo 4, hence N � 1

pmod 4q. Contradiction.

For (2), we similarly assume by contradiction that the set of all primes congruent to 1

modulo 4 is finite, say, T � tq1, q2, � � � , qmu. Then we consider M � p2q1q2 � � � qmq2 � 1.

Obviously qj � M for each j. Let q be any prime factor of M . Then q R T hence q � �1

pmod 4q. However q � M implies p2q1q2 � � � qmq2 � �1 pmod qq, i.e. �1 is a quadratic

residue modulo q. By Proposition 4.5 (1) we get q � 1 pmod 4q. Contradiction. �

Corollary 5.5. There are infinitely many odd primes p for which �1 is a quadratic

residue. There are also infinitely many odd primes p for which �1 is a quadratic non-

residue.

Proof. This is a immediate consequence of Propositions 4.5 (1) and 5.4. �
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Exercise Sheet 5

This sheet is due in the lecture on Tuesday 4th November, and will be discussed in the

exercise class on Friday 7th November.

Exercise 5.1. Evaluating Legendre symbols by Gauss’ lemma.

(1) Use Gauss’ lemma to determine p 5
7
q, p 3

11
q, p 6

13
q.

(2) For any odd prime p, use Gauss’ lemma to determine p �1
p
q and p 2

p
q.

(3) For any odd prime p, use Lemma 5.2 to determine p �1
p
q.

Exercise 5.2. Special cases of Dirichlet’s theorem.

(1) Show that there are infinitely many primes which are congruent to �1 modulo 6.

(Hint: follow the proof of Proposition 5.4 (1) to design the formula for N .)

(2) Show that there are infinitely many primes which are congruent to �1 modulo 8.

(Hint: follow the proof of Proposition 5.4 (2) to design the formula for N . You

need Proposition 4.5 (2) to analyse prime factors of N .)

Exercise 5.3. Quadratic residues for powers of odd primes.

Let p be an odd prime, e ¡ 0 and p � a.

(1) Assume a is a quadratic residue modulo pe�1. Show that a is a quadratic residue

modulo pe.

(2) Assume a is a quadratic residue modulo pe. Show that a is a quadratic residue

modulo pe�1. (Hint: if x2 � a pmod peq, then we can write x2 � a � bpe. Set

y � x� cpe and show that we can find c such that y2 � a pmod pe�1q.)
(3) Conclude by induction that a is a quadratic residue modulo pe iff p a

p
q � 1.

Exercise 5.4. Fermat’s two square problem.

Let p be an odd prime. Recall the ring of Gaussian integers Zris from Exercise 1.4.

(1) Suppose p � 1 pmod 4q. Show that there exist integers s and t such that pt �
s2 � 1. Conclude that p is not a prime in Zris. (Hint: �1 is a quadratic residue

modulo p; remember that Zris has unique factorisation as in Exercise 1.4 (3).)

(2) Suppose p � 1 pmod 4q. Use part (1) to show that p is the sum of two squares; i.e.

p � a2 � b2 for some a, b P Z. (Hint: part (1) implies p � αβ for some non-units

α and β in Zris. Then use Exercise 1.4 (1) and (4).)

(3) Suppose p � 3 pmod 4q. Show that p cannot be written as the sum of two squares.
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Solutions to Exercise Sheet 5

Solution 5.1. Evaluating Legendre symbols by Gauss’ lemma.

 For p 5
7
q, since p � 7 and r � 3, we need to consider the least residues of 5, 10

and 15, which are �2, 3 and 1. There is only one negative least residue, hence

p 5
7
q � �1.

For p 3
11
q, since p � 11 and r � 5, we consider the least residues of 3, 6, 9, 12

and 15, which are 3, �5, �2, 1 and 4. There are two negative least residues, hence

p 3
11
q � 1.

For p 6
13
q, since p � 13 and r � 6, we consider the least residue of 6, 12, 18, 24,

30 and 36, which are 6, �1, 5, �2, 4 and �3. There are three negative ones, hence

p 6
13
q � �1.

 We consider p �1
p
q. Let r � p�1

2
. We need to look at the least residues of

�1,�2, � � � ,�r. But they are already least residues themselves. Since there are r

of them, by Gauss’ Lemma, we get p �1
p
q � p�1qr � p�1q p�1

2 .

Now we consider p 2
p
q. Let r � p�1

2
. We look at the least residues of 2, 4, � � � , 2r.

We deal with four cases p � 1, 3, 5 or 7 pmod 8q separately. If p � 1 pmod 8q,
then we can assume p � 8m � 1 for some m ¥ 0, and r � 4m. The number 2k

has positive least residue for 1 ¤ k ¤ 2m and negative least residue for 2m� 1 ¤
k ¤ 4m. Hence by Gauss’ Lemma, p 2

p
q � p�1q2m � 1. If p � 3 pmod 8q,

then we write p � 8m � 3, and r � 4m � 1. The number 2k has positive least

residue for 1 ¤ k ¤ 2m and negative least residue for 2m � 1 ¤ k ¤ 4m � 1.

Hence p 2
p
q � p�1q2m�1 � �1. If p � 5 pmod 8q, then we write p � 8m � 5 and

r � 4m � 2. The number 2k has positive least residue for 1 ¤ k ¤ 2m � 1 and

negative least residue for 2m � 2 ¤ k ¤ 4m � 2, hence p 2
p
q � p�1q2m�1 � �1.

If p � 7 pmod 8q, then we write p � 8m � 7 and r � 4m � 3. The number

2k has positive least residue for 1 ¤ k ¤ 2m � 1 and negative least residue for

2m� 2 ¤ k ¤ 4m� 3, hence p 2
p
q � p�1q2m�2 � 1. In summary, we have p 2

p
q � 1

if p � 1 or 7 pmod 8q and �1 if p � 3 or 5 pmod 8q.
 Since a � �1, for any 1 ¤ l ¤ p�1

2
, �1   la

p
  0, hence r la

p
s � �1. Then

t � ° p�1
2

l�1 r lap s �
° p�1

2
l�1 �1 � �p�1

2
. By Lemma 5.2, p �1

p
q � p�1qt � p�1q� p�1

2 �
p�1q p�1

2 , where the last equality is due to the fact that n and �n always have the

same parity (both odd or both even) for any integer n. Or equivalently, p �1
p
q � 1

if p � 1 pmod 4q and �1 if p � �1 pmod 4q.
Solution 5.2. Special cases of Dirichlet’s theorem.

(1) Assume there are only finitely many primes congruent to �1 modulo 6, say, S �
tp1, p2, � � � , pnu. Then we consider N � 6p1p2 � � � pn�1 ¡ 1. It is clear that pi � N
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for each pi P S, hence p R S for each prime factor p of N . It follows that p � 5

pmod 6q. Moreover, p must be odd since N is odd, so p � 0, 2 or 4 pmod 6q.
Furthermore, the only prime congruent to 3 modulo 6 is 3. However 3 � N , hence

p � 3 pmod 6q. Therefore the only possibility is p � 1 pmod 6q. It follows that

N is a product of primes congruent to 1 modulo 6, hence N � 1 pmod 6q, which

contradicts the formula of N , from which we can see N � 5 pmod 6q. It follows

that there are infinitely many primes congruent to �1 modulo 6.

(2) Assume there are only finitely many primes congruent to �1 modulo 8, say, T �
tq1, q2, � � � , qmu. Then we consider M � p4q1q2 � � � qmq2 � 2 ¡ 1. Since each qj P T
is an odd prime, qj � 2, hence qj �M . If follows that if q is an odd prime factor of

M , then q R T , hence q � �1 pmod 8q. On the other hand, q � M implies that 2

is a quadratic residue modulo q, hence q � 1 or �1 pmod 8q. It follows that q � 1

pmod 8q. In other words, every odd prime factor of M is congruent to 1 modulo 8.

If we write M � 2p8q2
1q

2
2 � � � q2

m � 1q, then the second factor 8q2
1q

2
2 � � � q2

m � 1 must

be a product of primes congruent to 1 modulo 8, which is itself congruent to 1

modulo 8. Contradiction. This contradiction shows that there are infinitely many

primes congruent to �1 modulo 8.

Solution 5.3. Quadratic residues for powers of odd primes.

(1) Since a is a quadratic residue modulo pe�1, there exists some x P Z, such that

x2 � a pmod pe�1q. Equivalently, x2�a is a multiple of pe�1, which implies x2�a
is a multiple of pe. Or equivalently, x2 � a pmod peq. Since p � a, we have

hcfpa, peq � 1. We conclude that a is a quadratic residue modulo pe.

(2) Since a is a quadratic residue modulo pe, we have x2 � a pmod peq for some

x P Z. Equivalently, we can write x2 � a � bpe for some b P Z. Set y � x � cpe

for some c P Z, then we consider y2 � a. We have y2 � a � px � cpeq2 � a �
x2 � a� 2xcpe � c2p2e � pb� 2xcqpe � c2p2e.

Now we claim that we can choose c such that b� 2xc is a multiple of p. Indeed,

since p � a, we have p � x, hence hcfp2x, pq � 1. It follows by Proposition 2.5

that the congruence equation 2xz � �b pmod pq (think of it as an equation of

z) has a solution for z. Let z � c be such a solution, then 2xc � b is a multiple

of p, hence pb � 2xcqpe is a multiple of pe�1. On the other hand c2p2e is also a

multiple of pe�1 because 2e ¥ e� 1. It follows that y2 � a is a multiple of pe�1, or

equivalently, y2 � a pmod pe�1q. Since p � a, we have hcfpa, pe�1q � 1. Therefore

a is a quadratic residue modulo pe�1.

(3) By parts (1) and (2), a is a quadratic residue modulo pe iff a is a quadratic residue

modulo pe�1. Using this result inductively, we can conclude that a is a quadratic
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residue modulo pe for any positive integer e iff p is a quadratic residue modulo p,

which is equivalent to p a
p
q � 1.

Solution 5.4. Fermat’s two-square problem.

(1) Since p � 1 pmod 4q, �1 is a quadratic residue modulo p. In other words, x2 � �1

pmod pq has a solution. Let x � s be one such solution, then s2 � 1 is a multiple

of p. We can then write s2 � 1 � pt, where s, t P Z. It follows that p divides

s2 � 1 � ps � iqps � iq in Zris. If p could divide s � i in Zris, then we can write

s� i � ppx�yiq for some x, y P Z. It follows that py � 1. Contradiction. Therfore

p does not divide s� i. Similar one can show that p does not divide s� i. Hence

p is not a prime, because p divides the product of s � i and s � i but neither of

the factors.

(2) We know from Exercise 1.4 (2) that Zris is a Euclidean domain, hence a PID.

By Proposition 1.9 (2), every irreducible element in Zris is a prime. By part (1),

p is not a prime in Zris hence is not irreducible. It follows that we can write

p � αβ, such that α and β are non-units. We apply Exercise 1.4 (1) and get

νppq � νpαqνpβq. By the formula of the valuation ν, the left-hand side is p2. By

Exercise 1.4 (4), neither of the factor on the right-hand side is 1. Therefore the

only possibility is νpαq � νpβq � p. Let α � a � bi for some a, b P Z. Then

νpαq � a2 � b2 � p.

(3) We show that a2 � 0 or 1 pmod 4q for every a P Z. Indeed, if a is even, say a � 2k

for some k P Z, then a2 � 4k2 � 0 pmod 4q. If a is odd, say a � 2k � 1 for some

k P Z, then a2 � p2k � 1q2 � 4k2 � 4k � 1 � 1 pmod 4q. The same is true for b2.

We consider all the combinations and conclude that a2�b2 � 0 or 1 or 2 pmod 4q.
By assumption p � 3 pmod 4q, hence p � a2 � b2 is never possible.
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6. Number Fields

So far we have mainly focused on the ring of integers Z. But modern number theory is not

only about integers. From this point on we will enlarge our vision and study the so-called

algebraic integers.

6.1. Algebraic numbers and algebraic integers. We first introduce the following

terminologies, which will be convenient for our discussions:

Definition 6.1. An algebraic number is a complex number that is a root of a non-zero

polynomial fpxq with coefficients in Q. An algebraic integer is a complex number that is

a root of a non-zero monic (leading coefficient 1) polynomial fpxq with coefficients in Z.

Example 6.2. For example,
?

2 is an algebraic integer because it is a root of the poly-

nomial x2 � 2; i � ?�1 is also an algebraic integer because it is a root of x2 � 1; so is a

fifth root of unity cos 2π
5
� i sin 2π

5
because it is a root of x5 � 1. They are also algebraic

numbers.

Remark 6.3. We make the following remarks about this definition.

(1) It is clear that every a P Z is an algebraic integer. To avoid any potential confusion,

we sometimes call any element a P Z a rational integer (especially when both

notions appear in the same sentence).

(2) Clearly every algebraic integer is an algebraic number. But the converse is not

true; see Exercise 6.1.

(3) There are complex numbers which are not algebraic numbers. They are usually

called transcendental numbers. Typical examples include the ratio of the cir-

cumference and diameter of a circle π � 3.14159 . . ., and the base of the natural

logarithm e � 2.71828 . . .. We will not explain why they are not algebraic, but it

is a standard topic in transcendental number theory.

Example 6.4. A slightly more complicated example is
?

2 � ?
3i. We show it is an

algebraic integer by definition. Let x � ?
2 � ?

3i. We rewrite it as x � ?
2 � ?

3i and

square both sides to get x2 � 2
?

2x� 2 � �3. We rewrite it as x2 � 5 � 2
?

2x and square

both sides again to get x4 � 10x2 � 25 � 8x2. Hence x4 � 2x2 � 25 is a monic polynomial

in Zrxs for which
?

2�?
3i is a root.

We want to have a more straightforward way to understand the above example. Given

two algebraic integers, we ask whether their sum and product are still algebraic integers.

We will see the answer is yes. Before proving it we establish the following criterion:
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Lemma 6.5. Let V � tγ1, γ2, � � � , γnu be a finite set of non-zero complex numbers. Sup-

pose a complex number α has the property that for each i � 1, 2, � � � , n, the product αγi
can be written as an integral linear combination of elements in the set V . Then α is an

algebraic integer.

Proof. By assumption, for each i � 1, 2, � � � , n, we can write

αγi �
ņ

j�1

aijγj,

where each aij P Z.

Using the language of linear algebra, we have

α � v � M � v,
where

M �

�
����
a11 a12 � � � a1n

a21 a22 � � � a2n

...
...

. . .
...

an1 an2 � � � ann

�
���, v �

�
����
γ1

γ2

...

γn

�
���.

Since v � 0, we see that α is an eigenvalue of the square matrix M. In other words, α is

a solution of the equation

detpx � I�Mq � 0.

Since all entries of M are integers, it is clear that the left-hand side of the equation is a

polynomial with integer coefficients, whose leading term is xn. Therefore α is an algebraic

integer, as desired. �

Now we can prove the following important result:

Proposition 6.6. The sum and product of two algebraic integers are algebraic integers.

Proof. Suppose α and β are algebraic integers. If either α � 0 or β � 0, the statement is

clear. From now on we assume α � 0 and β � 0. We want to apply Lemma 6.5 to show

that α � β and αβ are also algebraic integers. Suppose α and β satisfy

αn � a1α
n�1 � a2α

n�2 � � � � � an�1α � an � 0

βm � b1β
m�1 � b2β

m�2 � � � � � bm�1β � bm � 0,

where each ai and bj are integers. Let

V �  
αiβj | 0 ¤ i   n, 0 ¤ j   m

(
.
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For each element αiβj P V , we claim that pα�βq �αiβj and αβ �αiβj can both be written

as integral linear combinations of elements in V . Indeed, we have

pα � βq � αiβj � αi�1βj � αiβj�1 (6.1)

αβ � αiβj � αi�1βj�1. (6.2)

If 0 ¤ i ¤ n�2 and 0 ¤ j ¤ m�2, then our claim is already true. Otherwise, if i � n�1

and/or j � m � 1, we can replace αn by �pa1α
n�1 � a2α

n�2 � � � � � an�1α � anq and/or

βm by �pb1β
m�1 � b2β

m�2 � � � � � bm�1β � bmq in the right-hand sides of (6.1) and (6.2),

then their expansions are still integral linear combinations of elements of V . Therefore

our claim is true. By Lemma 6.5, we conclude that α � β and αβ are both algebraic

integers. �

Corollary 6.7. The set of all algebraic integers forms a commutative ring with 1.

Proof. We have to check that the addition, the additive inverse and the multiplication

are all well-defined in the set of algebraic integers, and all algebraic laws required in the

definition of a ring hold in this set.

Proposition 6.6 proved that the addition and the multiplication are both well-defined. The

existence of additive inverse is given by Exercise 6.1. All algebraic laws related concerning

the addition and the multiplication hold because they hold for complex numbers. Hence

the set of algebraic integers forms a ring. �
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6.2. Number fields. We introduce the notion of number fields as follows:

Definition 6.8. An (algebraic) number field is a field K, such that Q � K � C, and K

has finite degree (dimension as a vector space) over Q.

Example 6.9. Simple example: the field Q itself is a number field of degree 1 over Q.

We recall a useful result in Algebra 2B which gives a lot of examples of number fields.

Proposition 6.10. Let k � K be a field extension, and let α P K be a root of some

non-zero polynomial gpxq P krxs. Then the set tfpαq P K | f P krxsu is a field, denoted by

krαs or kpαq, satisfying k � kpαq � K.

Moreover, assume gpxq is irreducible and deg gpxq � n, then kpαq has degree n over k
and t1, α, α2, � � � , αn�1u is a basis of kpαq over k.

Proof. See Proposition 2.23 (2013) or Theorem 4.8 (2014) in Algebra 2B. �

Remark 6.11. We point out two things.

(1) In Algebra 2B, we used the notation krαs. But in literature (especially in literature

on field theory) the notation kpαq seems to be used more often. We will use the

latter.

(2) Roughly speaking, if an element α in the large field is the root of a polynomial with

coefficients in the small field, then we can “add” α to the small field to generate

an intermediate field, which has a finite degree over the small field, with a basis

given by powers of α. If the small and large fields are Q and C respectively, we

can get lots of examples of number fields.

Example 6.12. In Proposition 6.10, we take k � Q and K � C.

(1) For any square-free integer d � 1,
?
d is a root of the irreducible polynomial

x2 � d P Qrxs. Therefore Qp?dq � ta � b
?
d | a, b P Qu is number field of degree

2 over Q. A number field of this form is called a quadratic field. It is called a real

quadratic field if d ¡ 0, or an imaginary quadratic field if d   0. For instance,

Qp?2q is a real quadratic fields and Qpiq is an imaginary quadratic field.

(2) We have that 3
?

2 is a root of the irreducible polynomial x3 � 2 P Qrxs. Therefore

Qp 3
?

2q � ta� b 3
?

2 � c 3
?

4 | a, b, c P Qu is a number field of degree 3 over Q. This

is an example of the so-called cubic field.

(3) We have that ζ � cos 2π
5
� i sin 2π

5
is the root of an irreducible polynomial x4 �

x3 � x2 � x � 1. Therefore Qpζq is a number field of degree 4 over Q. This is an

example of the so-called cyclotomic field.
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The following lemma justifies the name.

Lemma 6.13. Every element in a number field is an algebraic number.

Proof. Let K be a number field of degree n over Q and α P K. Then 1, α, α2, � � � , αn must

be linearly dependent over Q; i.e. a0� a1α� a2α
2� � � �� anαn � 0, where ai P Q for each

i and all ai’s are not simultaneously zero. This implies α is a root of a polynomial with

rational coefficients, hence is an algebraic number. �

We then introduce the notions of traces and norms.

Definition 6.14. Let K be a number field. Every α P K defines a Q-linear transformation

Lα : K Ñ K, γ ÞÑ αγ.

The trace of the linear transformation Lα is called the trace of α in K, denoted by TKpαq.
The determinant of the linear transformation Lα is called the norm of α in K, denoted

by NKpαq.
Remark 6.15. We make the following comments about this definition.

(1) The Q-linearity of Lα can be easily checked by observing αpγ1 � γ2q � αγ1 � αγ2

for any γ1, γ2 P K, and αpλγq � λpαγq for any γ P K and λ P Q.

(2) The trace and norm depends on both K and α. The same algebraic number α,

when considered as an element of different number fields, could have different

traces and norms. If there is only one number field K in consideration, we often

omit the reference to K and write T pαq and Npαq for simplicity.

(3) In practice we can choose any Q-basis of K and write the linear transformation Lα
as a matrix to compute T pαq and Npαq. We know that the trace and determinant

of a linear transformation are independent of the choice of the basis, but choosing

the basis wisely can make the computation easier.

The following properties can be easily proved using the language of linear transformations

and matrices.

Lemma 6.16. Let K be a number field of degree n over Q, α, β P K and a P Q. Then

(1) T pα � βq � T pαq � T pβq, Npαβq � NpαqNpβq;
(2) T paαq � aT pαq, Npaβq � anNpβq;
(3) T p1q � n, Np1q � 1;

(4) Npαq � 0 iff α � 0.

Proof. We leave them as exercises. See Exercise 6.3. �
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We show two examples of computation of traces and norms.

Example 6.17. Consider the number field K � Q. For any α P K, we compute its trace

and norm. We choose a Q-basis t1u for K, then the matrix of Lα under this basis is a

1� 1 matrix with the only entry α. Hence T pαq � α and Npαq � α.

Example 6.18. Consider the quadratic field K � Qp?dq where d � 1 is a square-free

integer. For any α � a� b
?
d P K, we compute its trace and norm. We choose a Q-basis

t1,?du for K. Since Lαp1q � a � b
?
d and Lαp

?
dq � bd � a

?
d, the matrix of Lα under

this basis is

�
a bd

b a

�
. Therefore T pαq � 2a and Npαq � a2 � b2d.

A crucial property of the trace and the norm is the following:

Proposition 6.19. Let K be a number field and α an algebraic integer in K, then

T pαq, Npαq P Z.

Sketch of proof. The proof of this result will be left in Exercise 6.4. Here we explain briefly

the motivation and main idea in the proof and give some hints step by step.

By Definition 6.14, if we can find a Q-basis for K, under which the matrix of the linear

transformation Lα has integral entries, then T pαq and Npαq are integers. Therefore the

proof contains two steps: find a Q-basis for K; show that the matrix of Lα under this

basis has integer entries.

More precisely, we consider an intermediate field Q � Qpαq � K as in Proposition 6.10.

Then for some m ¡ 0, we know t1, α, α2, � � � , αm�1u is a basis of Qpαq over Q. On the

other hand, we choose any basis of K over Qpαq, say tβ0, β1, � � � , βn�1u. We can prove

that the set

S �  
αiβj | 0 ¤ i ¤ m� 1, 0 ¤ j ¤ n� 1

(
is a basis of K over Q. For this purpose, we need to show that S is a spanning set and

elements in S are independent. Then we write down the matrix for Lα under this basis

and conclude all entries are integers. �
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Exercise Sheet 6

This sheet is due in the lecture on Tuesday 11th November, and will be discussed in the

exercise class on Friday 14th November.

Exercise 6.1. Examples of algebraic integers.

(1) Show that 1
2
p1 �?

5q is an algebraic integer by definition; i.e. by writing down a

monic polynomial in Zrxs for which it is a root. Do the same for 3�i and
?

2� 3
?

3.

(2) Show that 1
2

is an algebraic number but not an algebraic integer by definition.

(3) Suppose that α is an algebraic integer. Show that �α is also an algebraic integer.

Exercise 6.2. Examples of traces and norms.

(1) Let K be the cubic field Qp 3
?

2q. For any α � a� b 3
?

2� c 3
?

4 P K with a, b, c P Q,

write down the matrix for the linear transformation Lα under the basis t1, 3
?

2, 3
?

4u.
Compute the trace and norm of α in K.

(2) Let K be the cyclotomic field Qpζq where ζ � cos 2π
5
� i sin 2π

5
. Write down the

matrix for the linear transformation Lζ under the basis t1, ζ, ζ2, ζ3u. Compute the

trace and norm of ζ in K.

Exercise 6.3. Elementary properties of the trace and norm.

Let K be a number field of degree n over Q, α, β P K and a P Q. Prove the following

(1) T pα � βq � T pαq � T pβq, Npαβq � NpαqNpβq;
(2) T paαq � aT pαq, Npaβq � anNpβq;
(3) T p1q � n, Np1q � 1;

(4) Npαq � 0 iff α � 0.

Exercise 6.4. Traces and norms of algebraic integers.

Supply the details in the proof of Proposition 6.19 in the following steps. The set S is

defined in the sketch of proof in the lecture notes.

(1) Show that S spans K over Q, i.e. every element in K is a Q-linear combination

of elements in S with rational coefficients;

(2) Show that elements in S are linearly independent over Q;

(3) Write down the matrix for Lα under the basis S. Conclude that all entries are in

Z, and T pαq, Npαq P Z.
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Solutions to Exercise Sheet 6

Solution 6.1. Examples of algebraic integers.

(1) 1
2
p1�?

5q is an algebraic integer because it is a root of the polynomial x2 � x� 1.

For 3 � i, we let x � 3 � i, rewrite it as x � 3 � i and square both sides to get

x2 � 6x� 9 � �1, hence 3� i is the root of the polynomial x2 � 6x� 10.

For
?

2 � 3
?

3, we let x � ?
2 � 3

?
3, rewrite it as x � ?

2 � 3
?

3, take the third

powers to get x3�3
?

2x2�6x�2
?

2 � 3. We rewrite it as x3�6x�3 � p3x2�2q?2

and square both sides to get px3 � 6x� 3q2 � 2p3x2 � 2q2. Then we conclude that?
2 � 3

?
3 is the root of the polynomial px3 � 6x� 3q2 � 2p3x2 � 2q2 � x6 � 6x4 �

6x3�12x2�36x�1. Notice that all coefficients are integers, and the leading term

x6 has coefficient 1. This shows
?

2� 3
?

3 is an algebraic integer.

(2) 1
2

is an algebraic number because it is the root of 2x � 1. We show it is not an

algebraic integer by contradiction. Assume it is the root of a monic polynomial

xn � a1x
n�1 � a2x

n�2 � � � � � an�2x
2 � an�1x� an.

By substitution x � 1
2

we have

1

2n
� a1

2n�1
� a2

2n�2
� � � � � an�2

22
� an�1

2
� an � 0.

Now we multiply 2n on both sides to clear the denominators and obtain

1� 2a1 � 22a2 � � � � � 2n�2an�2 � 2n�1an�1 � 2nan � 0.

The left-hand side is an odd number. Contradiction. Therefore 1
2

is not an alge-

braic integer.

(3) Since α is an algebraic integer, it is a root of a polynomial fpxq � xn � a1x
n�1 �

a2x
n�2 � a3x

n�3 � � � � � an�1x � an P Zrxs. We consider the polynomial gpxq �
xn � a1x

n�1 � a2x
n�2 � a3x

n�3 � � � � � p�1qn�1an�1x� p�1qnan, which is a monic

polynomial with integer coefficients. We claim that �α is a root of gpxq. Indeed,

we have

gp�αq � p�αqn � a1p�αqn�1 � a2p�αqn�2 � a3p�αqn�3 � � � �
� � � � p�1qn�1an�1p�αq � p�1qnan

� p�1qnpαn � a1α
n�1 � a2α

n�2 � a3α
n�3 � � � � � an�1α � anq

� 0.

Hence �α is an algebraic integer.

The following is another proof. I would like to thank people who provided this

much better proof in their submitted solutions.
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Since both α and �1 are algebraic integers, and the product of two algebraic

integers is still an algebraic integer, we immediately know �α is an algebraic

integer.

Solution 6.2. Examples of traces and norms.

(1) We have Lαp1q � a � b 3
?

2 � c 3
?

4, Lαp 3
?

2q � 2c � a 3
?

2 � b 3
?

4, Lαp 3
?

4q � 2b �
2c 3
?

2� a 3
?

4. We write the coefficients as column vectors and get the matrix

M �

�
��a 2c 2b

b a 2c

c b a

�
�.

Therefore we have T pαq � trpMq � 3a and Npαq � detpMq � a3�2b3�4c3�6abc.

(2) We have Lζp1q � ζ, Lζpζq � ζ2, Lζpζ2q � ζ3, Lζpζ3q � ζ4 � �ζ3 � ζ2 � ζ � 1.

Hence the matrix is

M �

�
����

0 0 0 �1

1 0 0 �1

0 1 0 �1

0 0 1 �1

�
���.

Therefore we have T pζq � trpMq � �1 and Npζq � detpMq � 1.

Solution 6.3. Elementary properties of the trace and norm.

(1) For any γ P K, Lα�βpγq � pα � βqγ � αγ � βγ � Lαpγq � Lβpγq. Hence

the linear transformation Lα�β is the sum of the two linear transformations Lα
and Lβ. Under any fixed basis, if the matrices for Lα and Lβ are A and B

respectively, then their sum Lα�β corresponds to the matrix A�B. Since we have

trpA�Bq � trpAq � trpBq, we get T pα � βq � T pαq � T pβq.
For any γ P K, Lαβpγq � pαβqγ � αpβγq � LαpLβpγqq. Hence the linear

transformation Lαβ is the composition of the two linear transformations Lα and Lβ.

Under any fixed basis, if the matrices for Lα and Lβ are A and B respectively, then

their composition Lαβ corresponds to the matrix AB. Since we have detpABq �
detpAq detpBq, we get Npαβq � NpαqNpβq.

(2) For any γ P K, Laαpγq � paαqγ � apαγq � aLαpγq. Hence the linear transforma-

tion Laα is the linear transformation a�Lα. Under any fixed basis, if the matrices for

Lα is A, then the matrix corresponds to Laα is aA. Since we have trpaAq � a trpAq,
we get T paαq � aT pαq. Similarly, since we have detpaAq � an detpAq as A is an

n� n matrix, we get Npaαq � anNpαq.
(3) For any γ P K, L1pγq � γ. Hence the linear transformation L1 is the identity

map. Under any basis, its matrix is the n � n identity matrix In. Therefore

T p1q � trpInq � n and Np1q � detpInq � 1.
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(4) If α � 0, then Lα is the zero linear transformation, hence Np0q � 0. Now we prove

the other direction. We assume that Npαq � 0 for some α P K. Under a fixed

basis, we assume the matrix for Lα is A. Then detpAq � 0, which means that A

has a non-trivial null space. In other words, there is a non-zero vector v such that

Av � 0. But v is the vector form of some non-zero element γ P K. Hence we have

Lαpγq � 0. In other words, αγ � 0. Since γ � 0, we must have α � 0.

Solution 6.4. Traces and norms of algebraic integers.

(1) We first check S is a spanning set. For any x P K, since tβj | 0 ¤ j ¤ n� 1u is a

spanning set for K over Qpαq, there exist aj P Qpαq for 0 ¤ j ¤ n� 1 such that

x �
n�1̧

j�0

ajβj.

Since tαi | 0 ¤ i ¤ m � 1u is a spanning set for Qpαq over Q, for every j there

exists bij P Q for 0 ¤ i ¤ m� 1 such that

aj �
m�1̧

i�0

bijα
i.

Therefore we have

x �
n�1̧

j�0

m�1̧

i�0

bijα
iβj,

which implies that S is a spanning set for K over Q.

(2) We then check elements in S are independent over Q. Assume we have

n�1̧

j�0

m�1̧

i�0

bijα
iβj � 0

for some bij P Q. We can group the terms as

n�1̧

j�0

�
m�1̧

i�0

bijα
i

�
βj � 0.

Since
°m�1
i�0 bijα

i P Qpαq for each j, and tβju are independent over Qpαq, we

conclude that
m�1̧

i�0

bijα
i � 0

for each j. Moreover by the linear independence of tαiu, we conclude that

bij � 0

for every pair pi, jq, which implies that elements in S are independent over Q.
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(3) Now we compute the matrix of Lα under the basis S for K over Q. We assume

that α is a root of a monic irreducible polynomial gpxq P Zrxs of degree m, and

we write

gpxq � xm � c1x
m�1 � � � � � cm�1x� cm

where c1, � � � , cl P Z. For every pair of pi, jq, we have

Lαpαiβjq �
#
αi�1βj if 0 ¤ i ¤ l � 2

αlβj � �c1α
l�1βj � � � � � cl�1αβj � cnβj if i � l � 1.

We observe that all coefficients are integers, hence the matrix M associated to

the linear transformation Lα under the basis S is a matrix with integer entries. It

follows that T pαq and Npαq, as the trace and determinant of M , are also integers.

More precisely, the matrix M can be written in the following block diagonal

form

M �

�
����
D

D
. . .

D

�
���,

where each block along the diagonal is given by

D �

�
���������

0 0 0 � � � 0 �cm
1 0 0 � � � 0 �cm�1

0 1 0 � � � 0 �cm�2

...
...

...
. . .

...
...

0 0 0 � � � 0 �c2

0 0 0 � � � 1 �c1

�
��������
.

Hence T pαq � trpMq � �nc1 P Z and Npαq � detpMq � pp�1qmcmqn P Z.
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7. The Ring of Integers in a Number Field

We introduce the ring of integers OK in a number field K and determine the additive

structure of OK .

7.1. The ring of integers. We first introduce the central object that we will study.

Let K be a number field. We consider the set of all algebraic integers in K. By Corollary

6.7 and the fact that K is a field, this set is closed under addition, multiplication and

inverse, hence is a subring of the ring of all algebraic integers. This ring is called the ring

of (algebraic) integers in K, denote by OK . The remaining part of this course will be

devoted to study various properties of this ring.

The first obvious question, is to understand the elements in OK . We study this question

in two concrete examples.

Proposition 7.1. A rational number α P Q is an algebraic integer iff α P Z.

Proof. If α P Z, it is clearly an algebraic integer. For the other direction, if α is an

algebraic integer, by Proposition 6.19, we have T pαq P Z and Npαq P Z. By Example

6.17, in this case T pαq � Npαq � α, hence α P Z. �

Proposition 7.2. Let d � 1 be a square-free integer and K � Qp?dq the corresponding

quadratic field. The elements in the ring of integers OK is given by ta � bω | a, b P Zu,
where

ω �
#?

d if d � 2 or 3 pmod 4q;
1
2
p1�?

dq if d � 1 pmod 4q.

Proof. We first show that for any a, b P Z, a� bω is an algebraic number. By Proposition

6.6, it suffices to show ω is an algebraic integer. If d � 2 or 3 pmod 4q, ω is a root of

x2 � d hence is an algebraic integer. If d � 1 pmod 4q, ω is a root of x2 � x � d�1
4

hence

is also an algebraic integer.

It remains to show that every algebraic integer in K has the given form. Let α � r� s?d
is an algebraic integer for some r, s P Q. By Example 6.17 and Proposition 6.19, we know

T pr � s
?
dq � 2r P Z and Npr � s

?
dq � r2 � s2d P Z. Thus p2rq2 � p2sq2d P 4Z and

p2sq2d P Z. Since d is square-free, this implies 2s P Z.

Now we consider the case d � 2 or 3 pmod 4q. If both 2r and 2s are odd, then p2rq2 � 1

pmod 4q and p2sq2d � d pmod 4q, which contradicts p2rq2 � p2sq2d P 4Z. Hence at least

one of them is even. Then by p2rq2 � p2sq2d pmod 4q again and 4 � d we conclude that

both 2r and 2s are even; i.e. r, s P Z. So α � r � s
?
d has the given form.
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Now we consider the other case d � 1 pmod 4q. By p2rq2 � p2sq2d � p2sq2 pmod 4q we

know that 2r and 2s are either both even or both odd; i.e. r�s P Z. Then α � r�s?d �
pr � sq � sp1�?

dq � pr � sq � 2s � ω has the given form. �

Now we turn to the notion of the discriminant.

Definition 7.3. Let K be a number field of degree n over Q and α1, α2, � � � , αn an n-tuple

of elements of K. We define the discriminant of the n-tuple to be

∆pα1, α2, � � � , αnq � det

�
����
T pα1α1q T pα1α2q � � � T pα1αnq
T pα2α1q T pα2α2q � � � T pα2αnq

...
...

. . .
...

T pαnα1q T pαnα2q � � � T pαnαnq

�
���. (7.1)

Remark 7.4. If α1, α2, � � � , αn P OK , then each entry of the matrix is an integer by

Proposition 6.19, hence the discriminant ∆pα1, α2, � � � , αnq P Z.

Proposition 7.5. The n-tuple α1, α2, � � � , αn is a Q-basis for K iff ∆pα1, α2, � � � , αnq � 0.

Proof. We first show that if tαi | 1 ¤ i ¤ nu are linearly dependent over Q, then

∆pα1, α2, � � � , αnq � 0. By assumption we can find a1, a2, � � � , an P Q, not all zero,

such that
°n
i�1 aiαi � 0. Multiply this equation by αj and take the trace. By Lemma

6.16 we get
°n
i�1 aiT pαiαjq � 0 for each j � 1, 2, � � � , n. This shows that the rows of the

matrix in (7.1) are linearly dependent, so its determinant is zero.

We then show that if tαi | 1 ¤ i ¤ nu is a Q-basis for K, then ∆pα1, α2, � � � , αnq � 0.

Assume on the contrary that ∆pα1, α2, � � � , αnq � 0, then the rows of the matrix in

(7.1) are linearly dependent, so we can find a1, a2, � � � , an P Q, not all zero, such that°n
i�1 aiT pαiαjq � 0 for each j � 1, 2, � � � , n. Let α � °n

i�1 aiαi. By Lemma 6.16 we get

T pααjq � 0 for each j � 1, 2, � � � , n. Assume on the contrary that tαi | 1 ¤ i ¤ nu is a

basis, then α � 0, and there exist b1, b2, � � � , bn P Q such that α�1 � °n
j�1 bjαj. By Lemma

6.16 again we have T pαα�1q � °n
j�1 bjT pααjq � 0. Contradiction to T p1q � n � 0. �

Proposition 7.6. Suppose tα1, α2, � � � , αnu and tβ1, β2, � � � , βnu are both n-tuples in K.

Assume that for each j, αj �
°n
i�1 aijβi for some aij P Q and M � paijq the transition

matrix, then

∆pα1, α2, � � � , αnq � pdetMq2 ∆pβ1, β2, � � � , βnq.

Proof. (This proof is not covered in lecture and is non-examinable.) We have αjαl �°
i

°
k aijaklβiβk. Taking the traces of both sides we get T pαjαlq �

°
i

°
k aijaklT pβiβkq.

Let A � pT pαjαlqq, B � pT pβiβkqq be n � n matrices. Then we find the matrix identity

A �M 1BM where M 1 is the transpose of M . Take the determinant on both sides to get

detA � pdetMq2 detB, as desired. �
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7.2. Integral bases of ideals. We focus on the additive structure of the ring OK , then

OK is an (additive) abelian group, and every ideal I of OK is an abelian subgroup. We

are aiming to show that every ideal I is a free abelian group.

Lemma 7.7. For any β P K, there exists some b P Z, b � 0, such that bβ P OK.

Proof. By Lemma 6.13, β is an algebraic number. Therefore β satisfies an equation

a0β
m � a1β

m�1 � a2β
m�2 � � � � � am � 0

where ai P Z for each i and a0 � 0. Multiply both sides by am�1
0 to get

pa0βqm � a1pa0βqm�1 � a2a0pa0βqm�2 � � � � � ama
m�1
0 � 0.

This shows that a0β is an algebraic integer since aia
i�1
0 P Z for each i. �

Lemma 7.8. Every non-zero ideal I of OK contains a basis for K over Q.

Proof. Assume the degree of K over Q is n. Pick any Q-basis β1, β2, � � � , βn of K. By

Lemma 7.7 we can find some b P Z, b � 0, such that bβ1, bβ2, � � � , bβn P OK . Indeed, there

is some non-zero bi P Z for each βi such that biβi P OK . Then take b to be any common

multiple all bi’s.

We choose any α P I, α � 0. Then bβ1α, bβ2α, � � � , bβnα are in I and form a Q-basis of

K. Indeed, for any a1, a2, � � � , an P Q, if

a1bβ1α � a2bβ2α � � � � � anbβnα � 0,

then since bα � 0 we have

a1β1 � a2β2 � � � � � anβn � 0,

which implies ai � 0 for each i. Hence bβ1α, bβ2α, � � � , bβnα are Q-independent and is a

Q-basis for K. �

In other words, the above proposition says we can find a Q-basis for K which entirely

consists of algebraic integers. There are in general many choices for the Q-basis of K in

OK , but the follow result shows that some of them are much preferred.

Proposition 7.9. Let I be a non-zero ideal of OK. Then we can find α1, α2, � � � , αn P I
such that they form a Q-basis for K, and for every element α in the field K, α P I iff

α � a1α1 � a2α2 � � � � � anαn for some a1, a2, � � � , an P Z.

Proof. By Lemma 7.8, I contains Q-bases for K. By Remark 7.4 and Proposition 7.5,

the discriminant of any such basis is a non-zero integer. Therefore we can always find a

Q-basis for OK in I such that |∆pα1, α2, � � � , αnq| minimal.
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It is clear that every integral linear combination of α1, α2, � � � , αn is in I since I is an ideal.

For the other direction, for any α P I, we can write α � γ1α1 � γ2α2 � � � � � γnαn with

γi P Q. We need to show that every γi P Z. If not, then some γi R Z and by relabeling if

necessary we can assume γ1 R Z. We write γ1 � m � θ where m P Z and 0   θ   1. Let

β1 � α�mα1, β2 � α2, � � � , βn � αn. Then β1, β2, � � � , βn P I and is a Q-basis of K. And

the transition matrix between the two basis is�
����
θ 0 � � � 0

γ2 1 � � � 0
...

...
. . .

...

γn 0 � � � 1

�
���.

By Proposition 7.6, we find ∆pβ1, β2, � � � , βnq � θ2∆pα1, α2, � � � , αnq, which contradicts

the minimality of |∆pα1, α2, � � � , αnq| since 0   θ   1. Therefore γi P Z for every i, which

means every element in I is an integral linear combination of α1, α2, � � � , αn. �

Remark 7.10. We make some comments.

(1) For α1, α2, � � � , αn satisfying the conditions in Proposition 7.9, we say they form an

integral basis for I. This is very useful in the sense that every element in K can be

uniquely written as a rational linear combination of them, and every element in I

can be uniquely written as an integral linear combination of them. We sometimes

write I � Zα1 ` Zα2 ` � � � ` Zαn to indicate the second condition.

(2) As a special case of Proposition 7.9, we think of OK as a non-zero ideal in itself.

Then there is a Q-basis of K, ω1, ω2, � � � , ωn, such that every element α P K

is a Q-linear combination of ω1, ω2, � � � , ωn, and α is an algebraic integer iff all

coefficients in this linear combination are in Z. As an example, if K is a quadratic

field, we can choose ω1 � 1 and ω2 � ω as in Proposition 7.2.

Proposition 7.9 shows the existence of an integral basis for I, but the integral basis for

I may not be unique. Although there could be many choices, they all have the same

discriminants. We look at the following result:

Lemma 7.11. Suppose tα1, α2, � � � , αnu and tβ1, β2, � � � , βnu are two integral bases for I.

Then ∆pα1, α2, � � � , αnq � ∆pβ1, β2, � � � , βnq.

Proof. We leave it as an exercise. See Exercise 7.2. �

By Lemma 7.11, the discriminant of an integral basis of an ideal I in OK is independent

of the choice of the integral basis. We have the following definition:
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Definition 7.12. For any non-zero ideal I in OK , the discriminant of any integral basis of

I is called the discriminant of the ideal I, written as ∆pIq. In particular, the discriminant

of OK is called the discriminant of the number field K, written as ∆pOKq, or simply ∆K .

Remark 7.13. By Remark 7.4 and Proposition 7.5, we know that ∆pIq (hence ∆K) is

always a non-zero integer.

The discriminant of a number field is an important quantity associated to a number field.

In the following example we give the values for quadratic fields. We need to remember

them because they will be used extensively later.

Proposition 7.14. Let d � 1 be a square-free integer and K � Qp?dq a quadratic field.

Then

∆K �
#

4d if d � 2 or 3 pmod 4q;
d if d � 1 pmod 4q.

Proof. We leave it as an exercise. See Exercise 7.3. �
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Exercise Sheet 7

This sheet is due in the lecture on Tuesday 18th November, and will be discussed in the

exercise class on Friday 21st November.

Exercise 7.1. Examples of discriminants.

(1) Let K be the cubic field Qp 3
?

2q. Compute the discriminant ∆p1, 3
?

2, 3
?

4q.
(2) Let K be the cyclotomic field Qpζq where ζ � cos 2π

5
� i sin 2π

5
. Compute the

discriminant ∆p1, ζ, ζ2, ζ3q.
Exercise 7.2. The discriminant of an ideal is independent of the choice of integral basis.

Supply the proof of Lemma 7.11 in the following steps.

(1) Show that there exist n� n matrices M and N with integer entries, such that

∆pα1, α2, � � � , αnq � pdetMq2∆pβ1, β2, � � � , βnq,
∆pβ1, β2, � � � , βnq � pdetNq2∆pα1, α2, � � � , αnq.

(2) Show that pdetMq2pdetNq2 � 1. Conclude that pdetMq2 � pdetNq2 � 1 and

∆pα1, α2, � � � , αnq � ∆pβ1, β2, � � � , βnq.
Exercise 7.3. The discriminant of a quadratic field.

Supply the proof of Proposition 7.14 in the following two cases.

(1) Suppose d � 1 is a square-free integer, d � 2 or 3 pmod 4q and K � Qp?dq.
Compute ∆p1,?dq. What is the value for ∆K in this case?

(2) Suppose d � 1 is a square-free integer, d � 1 pmod 4q and K � Qp?dq. Compute

∆p1, 1�?d
2
q. What is the value for ∆K in this case?

Exercise 7.4. Integral basis for a principal ideal.

Let K be a number field of degree n over Q. Assume tω1, ω2, � � � , ωnu is an integral basis

for OK . Let α P OK , α � 0 and I � pαq. Show that tαω1, αω2, � � � , αωnu is an integral

basis for I in the following steps.

(1) Show that αωi P I for each i, 1 ¤ i ¤ n.

(2) Show that tαω1, αω2, � � � , αωnu are Q-linearly independent. Conclude that it is a

Q-basis for K.

(3) Show that every γ P I is a linear combination of elements in tαω1, αω2, � � � , αωnu
with integer coefficients. Conclude that it is an integral basis for I.

(4) As an example, suppose K � Qp?3q. Let α � ?
3 and I � pαq an ideal in OK .

Write down an integral basis for I, and use it to compute the discriminant ∆pIq.
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Solutions to Exercise Sheet 7

Solution 7.1. Examples of discriminants.

(1) By the definition of the discriminants, we need to compute

∆p1, 3
?

2,
3
?

4q � det

�
�� T p1q T p 3

?
2q T p 3

?
4q

T p 3
?

2q T p 3
?

4q T p2q
T p 3
?

4q T p2q T p2 3
?

2q

�
�.

By Exercise 6.2 (1), if α � a� b 3
?

2� c 3
?

4 P K for some a, b, c P Q, then the trace

of α in Qp 3
?

2q is given by T pαq � 3a. Hence we have T p1q � 3, T p2q � 6, while

T p 3
?

2q � T p 3
?

4q � T p2 3
?

2q � 0. Therefore

∆p1, 3
?

2,
3
?

4q � det

�
��3 0 0

0 0 6

0 6 0

�
�� �108.

(2) The discriminant that we need to compute is given by

∆p1, ζ, ζ2, ζ3q � det

�
����
T p1q T pζq T pζ2q T pζ3q
T pζq T pζ2q T pζ3q T pζ4q
T pζ2q T pζ3q T pζ4q T p1q
T pζ3q T pζ4q T p1q T pζq

�
���.

Following the method in Exercise 6.2 (2), we can write down the matrices corre-

sponding to L1, Lζ , Lζ2 , Lζ3 and Lζ4 under the basis t1, ζ, ζ2, ζ3u to compute the

corresponding traces. More precisely, we have T p1q � 4 by Lemma 6.16 (3) and

T pζq � tr

�
����

0 0 0 �1

1 0 0 �1

0 1 0 �1

0 0 1 �1

�
���� �1; T pζ2q � tr

�
����

0 0 �1 1

0 0 �1 0

1 0 �1 0

0 1 �1 0

�
���� �1;

T pζ3q � tr

�
����

0 �1 1 0

0 �1 0 1

0 �1 0 0

1 �1 0 0

�
���� �1; T pζ4q � tr

�
����
�1 1 0 0

�1 0 1 0

�1 0 0 1

�1 0 0 0

�
���� �1.

Therefore, the discriminant can be computed as

∆p1, ζ, ζ2, ζ3q � det

�
����

4 �1 �1 �1

�1 �1 �1 �1

�1 �1 �1 4

�1 �1 4 �1

�
���� det

�
����

5 �1 0 0

0 �1 0 0

0 �1 0 5

0 �1 5 0

�
���� 125.
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Solution 7.2. The discriminant of an ideal. Since tβ1, β2, � � � , βnu is an integral basis for

I, for each i we can write αi �
°n
j�1 aijβj, such that all entries of the transition matrix

M � paijq are integers. By Proposition 7.6, we get

∆pα1, α2, � � � , αnq � pdetMq2∆pβ1, β2, � � � , βnq. (7.2)

Similarly we can write βi �
°n
j�1 bijαj and all entries of the transition matrix N � pbijq

are also integers. By Proposition 7.6 we also get

∆pβ1, β2, � � � , βnq � pdetNq2∆pα1, α2, � � � , αnq. (7.3)

By (7.2) and (7.3), we get

∆pα1, α2, � � � , αnq � pdetMq2pdetNq2∆pα1, α2, � � � , αnq.
Since ∆pα1, α2, � � � , αnq � 0 by Proposition 7.5, we get pdetMq2pdetNq2 � 1. Since all

entries of M and N are integers, pdetMq2 and pdetNq2 are both non-negative integers,

hence pdetMq2 � pdetNq2 � 1, and the statement we want to prove follows.

Solution 7.3. The discriminant of a quadratic field.

(1) In Example 6.18 we know that, for any α � a� b
?
d P K for a, b P Q, its trace in

K is given by T pαq � 2a. Therefore we have

∆p1,
?
dq � det

�
T p1q T p?dq
T p?dq T pdq

�
� det

�
2 0

0 2d

�
� 4d.

Since t1,?du is an integral basis by Proposition 7.2, we conclude that ∆K � 4d

for the quadratic field K � Qp?dq when d � 2 or 3 pmod 4q.
(2) We still use the same formula as in part (1). Notice that T p1�?d

2
q � 2 � 1

2
� 1 and

T pp1�?d
2
q2q � T p1�d�2

?
d

4
q � 2 � 1�d

4
� 1�d

2
. Then we have

∆

�
1,

1�?
d

2

�
� det

�
�� T p1q T

�
1�?d

2

	
T
�

1�?d
2

	
T

��
1�?d

2

	2


�
�� det

�
2 1

1 1�d
2

�
� d.

Since t1, 1�?d
2
u is an integral basis by Proposition 7.2, we conclude that ∆K � d

for the quadratic field K � Qp?dq when d � 1 pmod 4q.
Solution 7.4. Integral basis of a principal ideal.

(1) Since α P I and ωi P OK for each i, by the definition of an ideal, we get αωi P I
for each i.

(2) Assume b1αω1 � b2αω2 � � � � � bnαωn � 0 for some b1, b2, � � � , bn P Q. Since

α � 0 we get b1ω1 � b2ω2 � � � � � bnωn � 0. It follows that bi � 0 for each

i, since tω1, ω2, � � � , ωnu is a Q-basis for K. Therefore tαω1, αω2, � � � , αωnu are

Q-independent. Thus they form a Q-basis for K.
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(3) Every γ P I � pαq can be written as γ � αβ for some β P OK . Since tω1, ω2, � � � , ωnu
is an integral basis for OK , we can write β � b1ω1 � b2ω2 � � � � � bnωn for

b1, b2, � � � , bn P Z. Hence γ � b1αω1 � b2αω2 � � � � � bnαωn is an integral lin-

ear combination of tαω1, αω2, � � � , αωnu. Together with the result in part (2), we

conclude that αω1, αω2, � � � , αωn is an integral basis for I.

(4) By Proposition 7.2, an integral basis for OK is given by tω1 � 1, ω2 �
?

3u. By

the conclusion in part (3), an integral basis for I is given by tαω1 �
?

3, αω2 � 3u.
Therefore we have

∆pIq � ∆p
?

3, 3q � det

�
T p3q T p3?3q

T p3?3q T p9q

�
� det

�
6 0

0 18

�
� 108.
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8. Unique Factorisation of Ideals

8.1. Finiteness of Quotient Rings. We will look at the norm of an ideal I in OK .

There are several descriptions of this notion. We will use the first description as the

definition and prove the other descriptions are all equivalent to this one.

Definition 8.1. Let K be a number field and OK its ring of integers. The norm of any

non-zero ideal I of OK is defined by

NpIq �
����∆pIq∆K

����
1
2

.

Remark 8.2. It is worth pointing out the following things about this notion.

(1) This definition is not to be confused with the norm of an element α in the number

field K; see Definition 6.14. Although they share the same terminology and nota-

tion, whether the argument is an element of an ideal should tell us which definition

is in use. On the other hand, the two notions do have very close relation. We will

explain that in Proposition 8.9.

(2) By Remark 7.13, we know that both ∆pIq and ∆K are non-zero, hence the norm

of the ideal I is always well-defined and a positive number. We will show that it

is in fact always a positive integer; see Proposition 8.3.

Proposition 8.3. Suppose ω1, ω2, � � � , ωn is an integral basis for OK and α1, α2, � � � , αn
is an integral basis for I. For each j, suppose αj �

°n
i�1 aijωi and M � paijq is the

transition matrix. Then NpIq � |detpMq|. In particular, NpIq is a positive integer.

Proof. Using Proposition 7.6, we have ∆pα1, α2, � � � , αnq � pdetpMqq2∆pω1, ω2, � � � , ωnq.
By Definition 7.12, this is equivalent to ∆pIq � pdetpMqq2∆K . By Remark 7.13, ∆pIq � 0

and ∆K � 0, hence we get |detpMq| �
���∆pIq

∆K

��� 12 � NpIq. Since ω1, ω2, � � � , ωn is an integral

basis for OK and each αj P OK , we know that the coefficients aij P Z. Therefore detpMq
is an integer. Since NpIq � 0, we conclude NpIq � |detpMq| is a positive integer. �

We give the third description of the norm of the ideal I. It also reveals a special property

of the ring OK , namely, the finiteness of quotient rings.

Proposition 8.4. For any non-zero ideal I of OK, the quotient ring OK{I is finite and

has order NpIq.

Proof. (This proof is not covered in lectures and is non-examinable.) Since I is an ideal

in OK , by forgetting the multiplication on them we know I is a subgroup of OK . By

Proposition 7.9, OK and I are both free abelian groups of rank n. By the structure
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theorem of finitely generated free abelian groups in group theory, we can find an integral

basis ω1, ω2, � � � , ωn for OK , such that d1ω1, d2ω2, � � � , dnωn is an integral basis for I, where

each di is a positive integer. We write d � d1d2 � � � dn.

We now show that the quotient ring OK{I is finite of order d. In other words, there are

precisely d cosets of I in OK . For this purpose, we will show that

S � tλ1ω1 � λ2ω2 � � � � � λnωn | 0 ¤ λi   di for i � 1, 2, � � � , nu
is a complete set of representatives for cosets of I in OK . On one hand, for each β P OK ,

let β � a1ω1 � a2ω2 � � � � � anωn for some a1, a2, � � � , an P Z. For each i, we can write

ai � qidi � ri for some 0 ¤ ri   di. Let γ � r1ω1 � r2ω2 � � � � rnωn, then β � γ �
q1d1ω1 � q2d2ω2 � � � � � qndnωn P I. Since γ P S, this shows every coset is represented

by some element in S. On the other hand, we need to show that elements in S represent

distinct cosets. Assume λ � λ1ω1�λ2ω2�� � ��λnωn P S and δ � δ1ω1�δ2ω2�� � ��δnωn P S
are in the same coset, then λ � δ P I, which implies di � λi � δi for each i. However we

also have �di   λi � δi   di, hence λi � δi � 0 for each i, which implies λ � δ. This

concludes S is a complete set of representatives for all cosets of I in OK , hence OK{I is

finite of order d � d1d2 � � � dn.

It remains to show that d � NpIq. We apply Proposition 8.3 for the particular bases

we chose at the beginning of the proof. Under these bases the matrix M is diagonal

with diagonal entries d1, d2, � � � , dn which are positive integers, hence NpIq � |detpMq| �
d1d2 � � � dn � d. It follows that the order of OK{I is NpIq. �

The following is an interesting consequence. NpIq P Z implies NpIq P OK . In fact, we

have

Corollary 8.5. For any non-zero ideal I in OK, NpIq P I.

Proof. Since 1 P OK , we consider the coset 1 � I. By Proposition 8.4, the sum of NpIq
copies of 1 � I is the zero element in OK{I; i.e. the coset NpIq � I is 0 � I. It follows

NpIq P I. �

Corollary 8.6. For any non-zero ideal I in OK, NpIq � 1 iff I � OK.

Proof. Both conditions NpIq � 1 and I � OK are equivalent to the condition that there

is only one coset of I in OK , hence they are equivalent. �

In other words, the norm of any other non-zero ideal is a positive integer larger than 1.

Remark 8.7. We have understood the norm of an ideal NpIq from three points of views:

in terms of discriminants (Definition 8.1); in terms of integral basis and transition matrix

(Proposition 8.3); in terms of the quotient ring (Proposition 8.4).
80



The following consequence of Proposition 8.4 is called the ascending chain condition.

Recall that a similar result was required to show that every PID is a UFD.

Proposition 8.8 (Ascending Chain Condition). Let K be a number field. In the ring of

integers OK, every ascending chain of ideals I1 � I2 � I3 � � � � stabilises. In other words,

there is a positive integer N such that Im � Im�1 for all m ¥ N .

Proof. For each m P Z�, suppose dm � NpImq which is the order of OK{Im by Proposition

8.4. If Im � Im�1, then for any a P OK , we have a� Im � a� Im�1; i.e. every coset of Im
is contained in some coset of Im�1 while every coset of Im�1 contains more than one coset

of Im. It follows that dm ¥ dm�1 and the equality holds iff Im � Im�1. The increasing

chain of ideals gives d1 ¥ d2 ¥ d3 ¥ � � � . Since all dm’s are positive integers, there exists

some N ¡ 0 such that dm � dm�1 for m ¥ N , hence Im � Im�1 for every m ¥ N . �

To provide a convenient tool for computing the norm of a principal ideal, we will explain

the relation between the two norms: the norm of an element and the norm of an ideal.

If the ideal I � pαq is generated by a single element α, it is natural to expect that Npαq
and NpIq are closely related. It is true by the following result.

Proposition 8.9. Let I � pαq for some non-zero element α P OK. Then NpIq � |Npαq|.

Proof. We will follow the definitions to interpret the two norms by determinants of certain

matrices. We fix an integral basis ω1, ω2, � � � , ωn for OK . It is also a Q-basis for K. For

each j � 1, 2, � � � , n, write αωj �
°n
i�1 aijωi, then the linear transformation Lα under this

basis is given by the matrix M � paijq. Hence Npαq � detpMq.
To compute NpIq, we first need to write down an integral basis for I. By Exercise 7.4,

we know that αω1, αω2, � � � , αωn is such an integral basis. Using this integral basis, we

apply Proposition 8.3 and get that NpIq � |detpMq|. It follows that NpIq � |Npαq|. �
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8.2. Unique factorisation of ideals. We review operations of ideals from Algebra 2B.

Let R be a commutative ring with identity 1. Let I and J be ideals of R, then the sum

of I and J is define to be

I � J � ta� b P R | a P I, b P Ju,
and the product of I and J is defined to be

IJ �
#

ķ

i�1

aibi P R | k P Z�, ai P I, bi P J for all 1 ¤ i ¤ k

+
.

The sum I � J and product IJ are both ideals of R. This fact is Lemma 2.4 (2013) or

Lemma 2.20 (2014) in Algebra 2B.

In particular, for any α P R and ideal I, we can easily verify that pαqI � tαa | a P Iu.
It is easy to check that under the assumption that R is commutative, both operations are

commutative and associative. Namely, for ideals I and J of R, we have I � J � J � I

and IJ � JI; for ideals I1, I2 and I3 of R, we have pI1 � I2q � I3 � I1 � pI2 � I3q and

pI1I2qI3 � I1pI2I3q. Therefore, we can simply write I1�I2�I3 or I1I2I3 without specifying

the order of the operations.

The building blocks in the factorisation of integers are prime numbers. To study factori-

sation of ideals, we also need to understand the building blocks first.

Definition 8.10. Let R be a commutative ring with 1. An ideal I of R is a proper ideal

if I � R. An ideal p of R is a prime ideal if p is proper, and ab P p implies a P p or b P p.

An ideal m of R is a maximal ideal if m is proper, and there is no ideal I strictly between

m and R; i.e. m � I � R implies I � m or I � R.

Example 8.11. Let R � Z. p6q is not a prime ideal because 2 � 3 P p6q but 2 R p6q and

3 R p6q. It is not a maximal idea because p6q � p2q � Z. But p2q is a prime ideal, because

if ab P p2q, then ab is even, hence either a or b is even. p2q is also a maximal ideal because

any ideal of Z has the form pdq. If p2q � pdq � Z, then d � 2, hence pdq � p1q or p2q.

The notions of prime ideals and maximal ideals lie in the heart of the study of algebraic

number theory and algebraic geometry. In general they are distinct notions, but in the

context of number fields, we have the following nice agreement.

Proposition 8.12. Let K be a number field, OK its ring of integers, and I a non-zero

ideal in OK. Then I is a prime ideal iff I is a maximal ideal.

Sketch of Proof. This is a standard fact in commutative ring theory. For any commutative

ring R with 1, one can prove that I is a prime ideal iff R{I is an integral domain, and

I is a maximal ideal iff R{I is a field. A field is always an integral domain, hence a
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maximal ideal is a prime ideal. This direction holds for any R. The other direction

requires R � OK . But by Proposition 8.4, OK{I is a finite commutative integral domain,

hence a field. This shows a non-zero prime ideal is also a maximal ideal. �

We study the unique factorisation of ideals in the ring of integers OK of a number field

K and its consequences.

Proposition 8.13. Let I be a non-zero ideal in OK. Then there exists an ideal J such

that IJ is a non-zero principal ideal.

Proof. This proof is omitted and non-examinable due to the limitation of time. It is

technical but does not use anything beyond what have learned so far. �

We have the following two useful consequences. The first one is the cancellation law for

ideals in OK . The second one can be phrased as “to contain is to divide”.

Corollary 8.14. Let I, J1, J2 be ideals in OK, I � 0. If IJ1 � IJ2, then J1 � J2.

Corollary 8.15. Let I1, I2 be ideals in OK. If I1 � I2, then there exists an ideal J in

OK, such that I1 � I2J .

Proof of Corollaries 8.14 and 8.15. Both statements are simple consequences of Proposi-

tion 8.13. We leave them as exercises. See Exercise 8.4. �

Now we are ready to establish the unique factorisation for ideals in OK .

Theorem 8.16 (Unique Factorisation of Ideals in OK). Let K be a number field and OK

its ring of integers. Then every non-zero proper ideal in OK can be uniquely written as a

finite product of prime ideals up to reordering factors.

Proof. The proof consists of two parts: existence and uniqueness of prime factorisations.

First we prove the existence. Let I be a non-zero proper ideal of OK . We claim that I is

contained in some maximal ideal P1. If I is not contained in any maximal ideal of OK , then

in particular, I itself is not maximal. Hence there is an ideal I1 with I � I1 � OK . Since

I1 is not maximal, we can find I2 with I1 � I2 � OK . The same procedure can be repeated

to obtain a strictly increasing chain of infinitely many ideals I � I1 � I2 � I3 � � � � ,
which contradicts Proposition 8.8.

By Corollary 8.15, we have I � P1J1 for some ideal J1. It is clear that I � J1. We claim

I � J1. Indeed, if I � J1, then by Corollary 8.14, we have OK � P1, which contradicts

the properness of P1.
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If J1 � OK , then the same argument shows that J1 � P2J2 for some maximal ideal P2 and

some ideal J2 strictly larger than J1. If J2 � OK then we can continue the process to get P3

and J3. We claim that we can get Jr � OK for some r. If not, this process goes on forever

and we get a strictly increasing chain of infinitely many ideals I � J1 � J2 � J3 � � � � ,
which contradicts Proposition 8.8.

Assume Jl � OK , then the process terminates here and we get

I � P1J1 � P1P2J2 � P1P2P3J3 � � � � � P1P2 � � �PrJr � P1P2 � � �Pr,
where each Pi is a maximal ideal, hence is also a prime ideal by Proposition 8.12.

Then we prove the uniqueness. Suppose P1P2 � � �Pr � I � Q1Q2 � � �Qs where Pi’s and

Qj’s are prime ideals. Then P1 � Q1Q2 � � �Qs. We claim that P1 � Qj for some Qj. If

not, then for each j � 1, 2, � � � , s, we can find aj P QjzP1. Since P1 is a prime ideal,

a1a2 � � � as R P1. However a1a2 � � � as P Q1Q2 � � �Qs � P1. Contradiction.

Therefore, by renumbering the Qj’s if necessary, we can assume that P1 � Q1. Since Q1

is a maximal ideal by Proposition 8.12, we conclude that P1 � Q1.

Using Corollary 8.14 we obtain P2 � � �Pr � Q2 � � �Qs. Continuing in the same way we

eventually find that r � s and Pi � Qi for all i after renumbering. �
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Exercise Sheet 8

This sheet is due in the lecture on Tuesday 25th November, and will be discussed in the

exercise class on Friday 28th November.

Exercise 8.1. Examples of norms of ideals.

(1) Let d � 1 be a square-free integer and K � Qp?dq. For any algebraic integer

α � a� b
?
d P OK , let I � pαq. Find the norm NpIq. (Hint: Proposition 8.9.)

(2) Let K be a number field of degree n over Q, a P Z. Let I � paq be the principal

ideal in OK generated by a. Find the norm NpIq. (Hint: Proposition 8.9.)

Exercise 8.2. Examples of sums and products of ideals.

Let R be a commutative ring with 1.

(1) Let I and J be ideals in R. Show that IJ � I and I � I � J .

(2) Let I be an ideal in R, α P R. Show that pαqI � tαγ | γ P Iu.
(3) Let α, β P R. Show that pαqpβq � pαβq.
(4) Let k be a field. The ideal px, yq in krx, ys is defined to be the sum of the two

principal ideals pxq � pyq. Show that px, yq consists of all polynomials in krx, ys
whose constant terms are 0.

Exercise 8.3. Examples of prime and maximal ideals.

(1) Let p P Z be prime. Show that the principal ideal ppq in Z is prime and maximal.

(2) Let k be a field. Show that the principal ideal pxq in krxs is prime and maximal.

(3) Let k be a field. Show that the ideal px, yq in krx, ys is prime and maximal. Show

that the principal ideal pxq in krx, ys is prime but not maximal.

Exercise 8.4. Cancellation law and “to contain is to divide”.

(1) Prove Corollary 8.14. (Hint: by Proposition 8.13, there is an ideal J such that

IJ � pγq is a non-zero principal ideal. Multiply IJ1 � IJ2 on both sides by J to

get pγqJ1 � pγqJ2. Then show that J1 � J2 and similarly J2 � J1 to conclude.)

(2) Prove Corollary 8.15. (Hint: first explain why the statement is clear if I2 � 0.

If I2 � 0, then by Proposition 8.13, there is an ideal I3 and γ � 0 such that

I2I3 � pγq. Hence we have I1I3 � I2I3 � pγq. Define the set J � tα P OK | γα P
I1I3u. Show that J is an ideal, and that I1I3 � pγqJ � I2I3J . Then apply the

cancellation law proved in part (1) to conclude I1 � I2J .)
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Solutions to Exercise Sheet 8

Solution 8.1. Examples of norms of ideals.

(1) Using the formula in Example 6.18, we have Npαq � a2� b2d. By Proposition 8.9,

NpIq � |Npαq| � |a2 � b2d|.
(2) By Lemma 6.16, we have Npaq � anNp1q � an. (We can also do it by writing

down a matrix for La, which is a diagonal matrix with a’s along the diagonal.) By

Proposition 8.9, NpIq � |Npaq| � |an|.
Solution 8.2. Examples of sums and products of ideals.

(1) We show IJ � I. Every element in IJ has the form a1b1�a2b2�� � ��akbk for some

positive integer k, where ai P I, bi P J for each i � 1, 2, � � � , k. Since ai P I and

bi P J � R, we have aibi P I for each i. Hence their sum a1b1�a2b2�� � ��akbk P I.

We then show I � I � J . For every element a P I, we have a � a� 0 P I � J since

0 P J . Both claims are proved.

(2) We need to show mutual inclusions. First we show pαqI � tαa | a P Iu. This

is clear because α P pαq and a P I imply αa P pαqI. Then we show the other

inclusion pαqI � tαa | a P Iu. Every element in pαq has the form rα for some

r P R. By the definition of the product of two ideals, every element in pαqI can

be written as a finite sum r1αa1 � r2αa2 � � � � � rkαak for some positive integer

k, where r1, � � � , rk P R and a1, � � � , ak P I. Since I is an ideal, we know that

riai P I for each i � 1, � � � , k, hence γ � r1a1 � � � � � rkak P I. Therefore

r1αa1 � r2αa2 � � � � � rkαak � αpr1a1 � � � � � rkakq � αγ has the required form.

(3) We need to show mutual inclusions. First we show pαqpβq � pαβq. Every element

in pαβq has the form rαβ for some r P R. since rα P pαq and β P pβq, we know

that rαβ P pαqpβq. We then show the other inclusion pαqpβq � pαβq. By part (2)

we know pαqpβq � tαγ | γ P pβqu, hence every element in pαqpβq has the form αγ

for some γ P pβq. We write γ � βδ for some δ P R, then αγ � αβδ P pαβq.
(4) We need to show two directions. First we show every element in px, yq is a poly-

nomial with zero constant term. Since px, yq is defined to be the sum of ideals

pxq � pyq, every element in it has the form xf � yg for some f, g P krx, ys. Every

term in the expansion of xf �yg has either a factor of x (if it comes from xf) or a

factor of y (if it comes from yg). Hence the expansion of xf � yg is a polynomial

with zero constant term. Now we show that every polynomial h P krx, ys with

zero constant term is an element in px, yq. Since h has zero constant term, every

non-zero term in h has a factor x or y (possibly both). Now we write h as the sum

of two polynomials h � h1 � h2 as follows: if a term in h is divisible by x but not

divisible by y, then it becomes a term in h1; if it is divisible by y but not by x,
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then it becomes a term in h2; if it is divisible by both x and y, then it becomes a

term in either h1 or h2 (the one of your choice). Now we realise that every term

in h1 is divisible by x, hence we can write h1 � xf for some f P krx, ys. Similarly

every term in h2 is divisible by y, hence we can write h2 � yg for some g P krx, ys.
Therefore h � xf � yg P pxq � pyq � px, yq.

Solution 8.3. Examples of prime and maximal ideals.

(1) It is clear that ppq is a proper ideal since 1 R ppq. We first show ppq is a prime

ideal. If ab P ppq for some a, b P Z, then p � ab. Since p is a prime, p � a or p � b,
which means either a P ppq or b P ppq. Hence ppq is a prime ideal. We then show

ppq is a maximal ideal. Assume there is an ideal I such that ppq � I � Z. Since

Z is a PID, I � paq is a principal ideal generated by some a P Z. Then we have

ppq � paq � Z, which implies that p P paq, hence a � p. It follows that a � �1 or

�p. In other words, I � paq � p1q � Z or I � paq � ppq. Hence ppq is a maximal

ideal.

(2) It is clear that pxq is a proper ideal since the constant polynomial 1 R pxq. We

first show pxq is a prime ideal. If fg P ppq for some f, g P krxs, then x � fg. Hence

either f or g has a factor x, which means either f P pxq or g P pxq. Hence pxq is a

prime ideal. We then show pxq is a maximal ideal. Assume there is an ideal I such

that pxq � I � krxs. Since krxs is a PID, I � phq is a principal ideal generated

by some h P krxs. Then we have pxq � phq � krxs, which implies that x P phq,
hence h is a factor of x. It follows that h is a non-zero constant polynomial or

a non-zero constant multiple of x. Since every non-zero constant polynomial is a

unit in krxs, if h is a non-zero constant, then I � phq � krxs; if h is a non-zero

constant multiple of x, then I � phq � pxq. Hence pxq is a maximal ideal.

(3) By Exercise 8.2 (4), every element in px, yq is a polynomial with zero constant

term. Hence the constant polynomial 1 R px, yq, and px, yq is a proper ideal. We

first show that px, yq is a prime ideal. Assume fg P px, yq for some f, g P krx, ys.
Then fg has a zero constant term. It follows that either f or g has a zero constant

term (otherwise the constant term of fg, as a product of two non-zero constant

terms, is non-zero). This shows that either f or g is an element in px, yq, hence

px, yq is a prime ideal. We then show that px, yq is a maximal ideal. Assume

px, yq � I � krx, ys. Then either I � px, yq or I contains some polynomial h with

a non-zero constant term. In the second possibility, we write h � h0 � c where c

is the constant term of h while h0 is the sum of all other terms in h. Since h P I
and h0 P px, yq � I, we know that c � h � h0 P I. However c is a unit in krx, ys,
hence I � krx, ys. We have proved that an intermediate ideal I is either px, yq or

krx, ys. Therefore px, yq is a maximal ideal.
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We now look at the ideal pxq. Clearly 1 R pxq, hence pxq is a proper ideal. We

first show pxq is a prime ideal. If fg P ppq for some f, g P krx, ys, then x � fg.

Hence either f or g has a factor x, which means either f P pxq or g P pxq. Hence

pxq is a prime ideal. Then we show that pxq is not a maximal ideal. Indeed, it is

clear that every polynomial in pxq is a multiple of x, hence has zero constant term.

It follows that pxq � px, yq. Since y is a polynomial in px, yq but not in pxq, we get

the strict inclusions pxq � px, yq � krx, ys, which shows that pxq is not maximal.

Solution 8.4. Cancellation law and “to contain is to divide”.

(1) By Proposition 8.13, there is an ideal J such that IJ � pγq is a non-zero principal

ideal. Multiply IJ1 � IJ2 on both sides by J . We find pγqJ1 � pγqJ2.

We show that J1 � J2. For any element α P J1, we know that γα P pγqJ1

hence γα P pγqJ2. By Exercise 8.2 (2), we know that every element in pγqJ2 can

be written as γβ for some β P J2. It follows that γα � γβ. Since γ � 0, we

have α � β P J2. This shows J1 � J2. By switching subscripts we can show that

J2 � J1 using the same argument. Hence J1 � J2.

(2) If I2 � 0, then I1 � 0, hence we can choose J to be any ideal in OK . If I2 � 0,

then by Proposition 8.13, there is an ideal I3 and γ � 0 such that I2I3 � pγq.
Hence we have I1I3 � I2I3 � pγq. We define J � tα P OK | γα P I1I3u.

We show that J is an ideal in OK . For any α1, α2 P J , we have γα1, γα2 P I1I3.

Since I1I3 is an ideal, we get γpα1 � α2q � γα1 � γα2 P I1I3. By the definition of

J , α1�α2 P J . On the other hand, for any α P J and any β P OK , since αγ P I1I3

and I1I3 is an ideal, we know that βαγ P I1I3. It follows that βα P J by the

definition of J . These two conditions prove J is an ideal in OK .

We claim that pγqJ � I1I3. First we show that pγqJ � I1I3. By Exercise 8.2 (2),

every element in pγqJ can be written as γα for some α P J . By the definition of

J , we have γα P I1I3. Hence pγqJ � I1I3. To show the other inclusion, assume we

have β P I1I3. Since I1I3 � pγq, we know β P pγq hence β � γα for some α P OK .

In fact, by the definition of J we actually have α P J . Hence β � γα P pγqJ ,

which shows that I1I3 � pγqJ . The mutual inclusions show that pγqJ � I1I3. It

follows that I1I3 � pγqJ � I2I3J . By Corollary 8.14 which we have proved in part

(1), we can cancel I3 on both sides and conclude I1 � I2J .
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9. The Ideal Class Group and Minkowski’s Theorem

We introduce the notions of the ideal class group and the class number, and prove

Minkowski’s Theorem, which will be used later to compute class numbers explicitly.

9.1. The ideal class group. We show some important applications of the theorem of

unique factorisation of ideals. The following definition plays a major role in algebraic

number theory.

Definition 9.1. Let K be a number field and OK its ring of integers. Two non-zero

ideals I, J in OK are said to be equivalent, I � J , if there exist non-zero α, β P OK , such

that pαqI � pβqJ . This is an equivalence relation. Each equivalence class is called an

ideal class.

We leave it in Exercise 9.3 to verify that I � J is an equivalence relation.

Theorem 9.2. For any number field K, the set of ideal classes in OK form an abelian

group.

Proof. For any non-zero ideal I of OK , let I denote the ideal class containing I. For two

ideals I and J of OK , we define the product of the ideal classes I and J to be the ideal

class IJ . The product is closed since IJ is an ideal. We need to check the product is

well-defined; that is, the product of two ideal classes does not depend on the choice of

the ideals in the two classes. This is Exercise 9.3. The commutativity and associativity

follow from those of multiplications of ideals. The ideal class containing OK serves as the

identity for the multiplication. For any non-zero ideal I of OK , by Proposition 8.13 there

exists some ideal J in OK such that IJ is a non-zero principle ideal, hence the inverse of

I is given by J . Therefore the ideal classes form an abelian group. �

Based on the above theorem, we make the following definitions.

Definition 9.3. Let K be a number field and OK its ring of integers. The group of ideal

classes in OK under multiplication is called the ideal class group of K. The order of the

ideal class group is called the class number of K, denoted by hK .

Remark 9.4. It can be proved that there are only finitely many ideal classes for every

number field, hence the class number is always finite. However, we will only prove the

finiteness for quadratic fields. And we will also show how to compute the class number

in some explicit examples.

In some sense, the class number measures how far OK is from being a PID.
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Proposition 9.5. Let K be a number field and OK its ring of integers. Then hK � 1 iff

OK is a PID.

Proof. It is clear that that hK � 1 iff every non-zero ideal I is equivalent to OK , and OK

is a PID iff every non-zero ideal is principal. Therefore it suffices to show that, for any

non-zero ideal I, we have I � OK iff I is principal.

For one direction, assume that I is a principal ideal pαq. Then we have p1qI � pαqOK ,

hence I � OK .

For the other direction, assume that I � OK . Then there are non-zero α, β P OK , such

that pαqI � pβqOK � pβq. From β P pαqI we know β � αγ for some γ P I. We claim

I � pγq. It is clear that I � pγq since γ P I. For any a P I, αa P pβq hence αa � βb for

some b P OK . Therefore a � γb P pγq, from which we conclude I � pγq. �

In this proof we have actually showed

Corollary 9.6. Let I be a non-zero ideal in OK, then I � OK iff I is a principal ideal.

Proof. The proof is already contained in that of Proposition 9.5. �

Corollary 9.7. Let K be a number field and OK its ring of integers. If hK � 1, then OK

is a UFD.

Proof. This is an immediate consequence of Proposition 9.5 and Theorem 1.11. �

Example 9.8. If K � Qris, then OK � Zris by Proposition 7.2. From Exercise 1.4 we

know Zris is a Euclidean domain, hence a PID and UFD. Then we know the class number

of K � Qris is 1. In many other examples, the opposite direction could be more useful: if

we can show the class number hK � 1, then OK is a UFD. Hence it is important to find

a systematic way to compute class numbers. We will see it later.

Our next goal is to prove Minkowski’s Theorem, which is the main tool for computing

class numbers. We need to introduce some terminologies before stating the theorem.For

the moment we forget number theory and think about some geometry.

Definition 9.9. Let e1, e2 be two linearly independent vectors in R2. The abelian group

L � tm1e1�m2e2 | m1,m2 P Zu is called a lattice of rank 2 in R2. The set te1, e2u is called

a generator of L. The fundamental domain of L with respect to the generator te1, e2u is

the set T � ta1e1 � a2e2 | a1, a2 P R, 0 ¤ a1   1, 0 ¤ a2   1u.

Using the standard metric on R2, we can define the volume (or area) of a measurable

subset X � R2 in the usual way, more precisely by

»
X

dxdy, denoted by volpXq. However
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the only examples that we are interested in are the volumes of rectangles, disks, and

parallelograms, which are familiar. For instance, let ei � pxi, yiq for i � 1, 2, then the

volumn of the fundamental domain of the lattice L is given by

volpT q �
����� det

�
x1 x2

y1 y2

� ����� .
Definition 9.10. A subset X � R2 is convex if, whenever p, q P X, the point λp � p1 �
λqq P X for all real λ, 0 ¤ λ ¤ 1. A subset X � R2 is centrally symmetric if p P X
implies �p P X.

In other words, if X is convex, then the straight line segment joining two points in X

completely lies in X. For example a disk, a square, a triangle is convex, but an annulus

is not. A disk is centrally symmetric only when its centre is at p0, 0q.
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9.2. Minkowski’s theorem. From now on we will focus on quadratic fields Qp?dq for

any square-free integer d and prove their class numbers are finite; see Example 6.12 (1).

Now we state the famous Minkowski’s Theorem in dimension 2, which is the main tool in

studying this problem.

Theorem 9.11 (Minkowski’s Theorem). Let L be a lattice of rank 2 in R2 with fundamen-

tal domain T . Let X be a centrally symmetric convex subset of R2. If volpXq ¡ 4 volpT q,
then X contains a non-zero point of L.

Proof. We first shrink X to half of its size in length; precisely speaking, we consider

Y � tp P R2 | 2p P Xu. Then volpY q � 1
4

volpXq ¡ volpT q.
For every h P L, we define h � T � th � p | p P T u which is the transport of the

fundamental domain along the vector h. It is clear that R2 becomes the disjoint union of

these parallelograms. Let Yh � Y Xph�T q is the part of Y which lies in the parallelogram

h�T for each h P L, then Y becomes the disjoint union of all Yh’s, hence
°
hPL volpYhq �

volpY q ¡ volpT q. We transport each Yh back to the fundamental domain, say Y 1
h � tq P

T | h � q P Yhu. Then
°
hPL volpY 1

hq �
°
hPL volpYhq ¡ volpT q. Since each Y 1

h � T ,

this inequality implies they are not disjoint. Therefore there exist h1, h2 P L, h1 � h2,

such that we can find some q P Y 1
h1
X Y 1

h2
. That implies p1 � h1 � q P Yh1 � Y and

p2 � h2 � q P Yh2 � Y , hence we found p1, p2 P Y , such that p1 � p2 � h1 � h2 P L.

Since p1, p2 P Y , we have 2p1, 2p2 P X. Since X is centrally symmetric, �2p2 P X. Since

X is convex, 1
2
p2p1q � 1

2
p�2p2q P X. And 1

2
p2p1q � 1

2
p�2p2q � h1 � h2 is a non-zero point

in L. �

Corollary 9.12. Let L be a lattice of rank 2 in R2 with fundamental domain T . Let X

be a centrally symmetric convex subset of R2. If X is compact (i.e. closed and bounded),

and volpXq ¥ 4 volpT q, then X contains a non-zero point of L.

Proof. We do not prove this corollary rigorously because it requires some understanding

of topology. Intuitively, we can enlarge X a little bit so that we can apply Theorem 9.11

and obtain lattice points in the enlarged X. Since this enlargement can be arbitrarily

tiny, there must be lattice points within the boundary of X. �

As an indication on how geometry can be used to study number fields, we construct lattices

from some familiar objects. Here we consider a quadratic number field K � Qp?dq for

any square-free integer d. As usual, its ring of integers is denoted by OK and let I be any

non-zero ideal of OK .

Proposition 9.13. Let d   0 be a square-free integer and K � Qp?dq a quadratic field.

For any non-zero ideal I in OK, the set LI � tpReα, Imαq P R2 | α P Iu is a lattice of

rank 2 in R2. Let TI be the fundamental domain of LI , then volpTIq � 1
2
NpIq |∆K |

1
2 .
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Proof. This proposition can be proved in three steps.

Step 1. We prove that LI is a lattice of rank 2 in R2. By Proposition 7.9, assume

α1, α2 is an integral basis for I, then we can write I � tm1α1 � m2α2 | m1,m2 P Zu.
Let e1 � pReα1, Imα1q and e2 � pReα2, Imα2q, then for every α � m1α1 � m2α2 P I,

pReα, Imαq � m1pReα1, Imα1q �m2pReα2, Imα2q � m1e1 �m2e2. Hence LI � tm1e1 �
m2e2 | m1,m2 P Zu is a rank 2 lattice in R2.

Step 2. We calculate the volume of the fundamental domain in a special case, i.e. TOK
.

By Proposition 7.2, we can write OK � tm1ω1 �m2ω2 | m1,m2 P Zu, where ω1 � 1, and

ω2 �
?
d if d � 2 or 3 pmod 4q and 1

2
p1�?

dq if d � 1 pmod 4q.
When d � 2 or 3 pmod 4q, we have e1 � pReω1, Imω1q � p1, 0q and e2 � pReω2, Imω2q �
p0,?�dq. Hence the volume of the fundamental domain is

volpTOK
q �

����� det

�
1 0

0
?�d

� ����� �
?
�d � 1

2
|∆K |

1
2 ,

where the last equality follows from Proposition 7.14.

When d � 1 pmod 4q, we have e1 � pReω1, Imω1q � p1, 0q and e2 � pReω2, Imω2q �
p1

2
, 1

2

?�dq. Hence the volume of the fundamental domain is

volpTOK
q �

����� det

�
1 1

2

0 1
2

?�d

� ����� � 1

2

?
�d � 1

2
|∆K |

1
2 ,

where the last equality still follows from Proposition 7.14.

Step 3. We calculate the volume of the fundamental domain TI in general. For an

arbitrary ideal I with an integral basis α1, α2, we can write α1 � a11ω1 � a21ω2 and

α2 � a12ω1 � a22ω2, as well as the transition matrix M � paijq, where aij P Z. By taking

real parts and imaginary parts of α1 and α2, we realise that they can be organised into

the following matrix�
Reα1 Reα2

Imα1 Imα2

�
�
�
a11 a12

a21 a22

��
Reω1 Reω2

Imω1 Imω2

�
.

Taking determinants and absolute values on both sides, we get

volpTIq � |detM | volpTOK
q.

By Proposition 8.3 and step 2, we conclude that

volpTIq � 1

2
NpIq |∆K |

1
2

as required. �

A parallel statement can be established as follows
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Proposition 9.14. Let d ¡ 1 be square-free and K � Qp?dq a quadratic field. For any

non-zero ideal I of OK, the set LI �
 pa� b

?
d, a� b

?
dq P R2 | a� b

?
d P I, a, b P Q

(
is a lattice of rank 2 in R2. Let TI be the fundamental domain of LI , then volpTIq �
NpIq |∆K |

1
2 .

Proof. We leave it as an exercise. See Exercise 9.4. �
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Exercise Sheet 9

This sheet is due in the lecture on Tuesday 2nd December, and will be discussed in the

exercise class on Friday 5th December.

Exercise 9.1. Card games and non-card games.

Answer the following questions. You do not need to justify your answers.

(1) Which of the following shape(s) is/are convex? (i) a spade; (ii) a heart; (iii) a club;

(iv) a diamond; (v) a joker. (Hint: think of these shapes as in a standard 52-card

deck, but pretend that the four sides of the diamond are straight line segments.)

(2) Which of the following shape(s) is/are centrally symmetric? (i) a square with

vertices p0, 0q, p1, 0q, p1, 1q, p0, 1q; (ii) a rhombus with vertices p1, 0q, p0, 2q, p�1, 0q,
p0,�2q; (iii) a triangle with vertices p1,�1q, p0, 1q, p�1,�1q; (iv) a parallelogram

with vertices p2, 3q, p3, 4q, p�2,�3q, p�3,�4q; (v) a disk tpx, yq P R2 | px � 1q2 �
py � 1q2 ¤ 1u; (vi) an annulus tpx, yq P R2 | 1 ¤ x2 � y2 ¤ 2u.

Exercise 9.2. Applications of Minkowski’s Theorem.

(1) Assume we have a lattice L of rank 2 in R2 whose fundamental domain has volume

A. For which positive values of r is the disk D � tpx, yq P R2 | x2 � y2 ¤ r2u
guaranteed to contain at least one non-zero point of L?

(2) Assume we have a lattice L of rank 2 in R2 whose fundamental domain has volume

A. For which positive values of r is the square S � tpx, yq P R2 | |x| � |y| ¤ ru
guaranteed to contain at least one non-zero point of L?

Exercise 9.3. Basic properties of ideal classes.

(1) Show that the relation � in Definition 9.1 is an equivalence relation. (Hint: an

equivalence relation requires (i) reflexivity: I � I; (ii) symmetry: if I � J then

J � I; (iii) transitivity: if I1 � I2 and I2 � I3 then I1 � I3.)

(2) Show that the product of ideal classes is well-defined; i.e. if I1 � I2 and J1 � J2,

then I1J1 � I2J2.

Exercise 9.4. Volume of the fundamental domain for real quadratic fields.

Supply the proof of Proposition 9.14 in the following steps.

(1) Prove LI is a lattice of rank 2 in R2 by writing down a pair of generators e1, e2.

(2) Use the integral basis of OK given in Proposition 7.2 to compute volpTOK
q.

(3) Use a matrix M to relate volpTIq and volpTOK
q, and prove the formula for volpTIq.
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Solutions to Exercise Sheet 9

Solution 9.1. Card games and non-card games.

(1) A diamond is convex assuming the four sides are all line segments (despite that

they look a little curved on any playing cards). All the other shapes are non-

convex.

(2) The shapes (ii), (iv) and (vi) are centrally symmetric. The other shapes are not.

Solution 9.2. Applications of Minkowski’s Theorem.

(1) D is centrally symmetric, convex and compact. Hence Corollary 9.12 applies.

If volpDq ¥ 4A, then D is guaranteed to contain a non-zero point in L. This

condition can be written as πr2 ¥ 4A. When r ¡ 0, it is equivalent to r ¥ �
4A
π

� 1
2 .

(2) S is centrally symmetric, convex and compact. Hence Corollary 9.12 applies. If

volpSq ¥ 4A, then S is guaranteed to contain a non-zero point in L. Note that

volpSq � 2r2, hence this condition becomes 2r2 ¥ 4A. When r ¡ 0, it is equivalent

to r ¥ p2Aq 1
2 .

Solution 9.3. Basic properties of ideal classes.

(1) The reflexivity is clear, as for any non-zero principal ideal pαq, we have pαqI �
pαqI, hence I � I. The symmetry is also easy. If I � J , then there exist non-zero

principal ideals pαq and pβq, such that pαqI � pβqJ . We switch the two sides and

write the equation as pβqJ � pαqI, then by definition we get J � I.

Now we prove the transitivity. By I1 � I2, we can find non-zero principal

ideals pα1q and pα2q, such that pα1qI1 � pα2qI2. By I2 � I3, we can find non-zero

principal ideals pβ2q and pβ3q, such that pβ2qI2 � pβ3qI3. We multiply both sides

of the first identity by pβ2q and get pα1qpβ2qI1 � pα2qpβ2qI2. By Exercise 8.2 (3),

we can rewrite it as pα1β2qI1 � pα2β2qI2. Similarly, we can multiply both sides of

the second identity by pα2q to get pα2qpβ2qI2 � pα2qpβ3qI3, which can be rewritten

as pα2β2qI2 � pα2β3qI3. Now we get pα1β2qI1 � pα2β2qI2 � pα2β3qI3. We need

to show that pα1β2q and pα2β3q are both non-zero principal ideals. Since α1 and

β2 are both non-zero complex numbers, their product α1β2 is also non-zero, hence

pα1β2q is also a non-zero principal ideal. For the same reason pα2β3q is a non-zero

principal ideal. Hence we conclude that I1 � I3.

(2) From I1 � I2, we know that for some non-zero principal ideals pα1q and pα2q,
we have pα1qI1 � pα2qI2. J1 � J2, we know that for some non-zero principal

ideals pβ1q and pβ2q, we have pβ1qJ1 � pβ2qJ2. We multiply the two identities

to get pα1qpβ1qI1J1 � pα2qpβ2qI2J2. By Exercise 8.2 (3), we can rewrite it as
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pα1β1qI1J1 � pα2β2qI2J2. For similar reasons as in part (1), both pα1β1q and

pα2β2q are non-zero principal ideals. Hence we have I1J1 � I2J2.

Solution 9.4. Volume of the fundamental domain for real quadratic fields.

(1) We prove that LI is a lattice of rank 2 in R2. By Proposition 7.9, assume α1, α2

is an integral basis for I, then we can write I � tm1α1 � m2α2 | m1,m2 P Zu.
We write α1 � a1 � b1

?
d and α2 � a2 � b2

?
d for some a1, b1, a2, b2 P Q. Let

e1 � pa1 � b1

?
d, a1 � b1

?
dq and e2 � pa2 � b2

?
d, a2 � b2

?
dq, then for every

α � m1α1 � m2α2 � pm1a1 � m2a2q � pm1b1 � m2b2q
?
d P I, the corresponding

point in LI is given by ppm1a1�m2a2q�pm1b1�m2b2q
?
d, pm1a1�m2a2q�pm1b1�

m2b2q
?
dq � m1pa1� b1

?
d, a1� b1

?
dq�m2pa2� b2

?
d, a2� b2

?
dq � m1e1�m2e2.

Hence LI � tm1e1 �m2e2 | m1,m2 P Zu is a rank 2 lattice in R2.

(2) We calculate TOK
. By Proposition 7.2, we can write OK � tm1ω1 � m2ω2 |

m1,m2 P Zu, where ω1 � 1, and ω2 �
?
d if d � 2 or 3 pmod 4q and 1

2
p1 �?

dq if

d � 1 pmod 4q.
When d � 2 or 3 pmod 4q, we have e1 � p1, 1q and e2 � p?d,�?dq. Hence

volpTOK
q �

����� det

�
1

?
d

1 �?d

� ����� �
����2

?
d
��� � 2

?
d � |∆K |

1
2 ,

where the last equality follows from Proposition 7.14.

When d � 1 pmod 4q, we have e1 � p1, 1q and e2 � p1
2
p1 � ?

dq, 1
2
p1 � ?

dqq.
Hence the volume of the fundamental domain is

volpTOK
q �

����� det

�
1 1

2
p1�?

dq
1 1

2
p1�?

dq

� ����� �
����?d��� � ?

d � |∆K |
1
2 ,

where the last equality still follows from Proposition 7.14.

(3) We calculate the volume of the fundamental domain TI in general. For an arbitrary

ideal I with an integral basis α1, α2, we can write α1 � a11ω1 � a21ω2 and α2 �
a12ω1 � a22ω2, as well as the transition matrix M � paijq, where aij P Z. For

simplicity, we write the points in LI corresponding to αi by pαi, α1iq for i � 1, 2.

Similarly, we write the points in LI corresponding to ωi by pωi, ω1iq for i � 1, 2.

Then they can be organised into the following matrix�
α1 α2

α11 α12

�
�
�
a11 a12

a21 a22

��
ω1 ω2

ω11 ω12

�
.

Taking determinants and absolute values on both sides, we get

volpTIq � |detM | volpTOK
q.

By Proposition 8.3 and part (2), we conclude that

volpTIq � NpIq |∆K |
1
2 .
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10. Computation of Class Numbers

We will establish the Minkowski bound for class numbers, and show how to use it to make

explicit computations in examples.

10.1. Minkowski bound. We will show an upper bound for class numbers due to Minkowski.

The formula is still a little different for real quadratic fields and imaginary quadratic fields.

Proposition 10.1. Let K � Qp?dq be a quadratic field with d   0. For any non-zero

ideal I of OK, there exists a non-zero element α P I such that |Npαq| ¤ 2
π
NpIq |∆K |

1
2 .

Proof. By Proposition 9.13, we know that LI is a rank 2 lattice in R2 with the volume of

the fundamental domain volpTIq � 1
2
NpIq |∆K |

1
2 .

Now we consider the closed disk D with centre p0, 0q and radius r �
�

2
π
NpIq |∆K |

1
2

	 1
2
.

D is centrally symmetric, convex, compact, with volume volpDq � πr2 � 2NpIq |∆K |
1
2 �

4 volpTIq. By Corollary 9.12, D contains non-zero lattice point in LI . In other words, there

exists some α P I, such that the point pReα, Imαq P D. Hence pReαq2 � pImαq2 ¤ r2.

If we write α � a � b
?
d, then Reα � a and Imα � b

?�d, hence pReαq2 � pImαq2 �
a2 � b2d � Npαq by Example 6.18. In particular, Npαq ¥ 0. It follows that |Npαq| �
Npαq ¤ r2 � 2

π
NpIq |∆K |

1
2 . �

To prove next result we need the following lemma

Lemma 10.2. For any numeber field K, let I and J be non-zero ideals in OK. Then

NpIJq � NpIqNpJq.

Proof. The proof is omitted and non-examinable. It is a consequence of Theorem 8.16. �

Proposition 10.3. Let K � Qp?dq be a quadratic field with d   0. Then every ideal

class C of OK contains an ideal I with NpIq ¤ 2
π
|∆K |

1
2 .

Proof. By Theorem 9.2, the ideal class C has an inverse in the ideal class group. We

denote this inverse ideal class by J where J is any representative. Then by Proposition

10.1, there exists a non-zero element β P J such that |Npβq| ¤ 2
π
NpJq |∆K |

1
2 . Since we

have pβq � J , there exists some ideal I such that IJ � pβq by Corollary 8.15. Since the

ideal class containing pβq is the identity element in the ideal class group, I and J are

inverse of each other, hence I is an ideal in C. It remains to show NpIq satisfies the given

bound.
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By Lemma 10.2 and Proposition 8.9, we have the following calculation

NpIqNpJq � NpIJq � Nppβqq � |Npβq| ¤ 2

π
NpJq |∆K |

1
2 .

Since NpJq is a positive integer by Proposition 8.3, we cancel it to get NpIq ¤ 2
π
|∆K |

1
2

as required. �

We can get the following parallel results for real quadratic fields. We leave the proofs as

exercises.

Proposition 10.4. Let K � Qp?dq be a quadratic field with d ¡ 0. For any ideal I of

OK, there exists a non-zero element α P I such that |Npαq| ¤ 1
2
NpIq |∆K |

1
2 .

Proof. The proof is similar to that of Proposition 10.1. See Exercise 10.3. �

Proposition 10.5. Let K � Qp?dq be a quadratic field with d ¡ 0. Then every ideal

class C of OK contains an ideal I with NpIq ¤ 1
2
|∆K |

1
2 .

Proof. The proof is similar to that of Proposition 10.3. See Exercise 10.3. �

Summarising the above results, we get the following definition:

Definition 10.6. Let d be a square-free integer, d � 1, and K � Qp?dq a quadratic field.

The Minkowski bound MK is defined by

MK �
#

2
π
|∆K |

1
2 if d   0,

1
2
|∆K |

1
2 if d ¡ 0,

with the property that every ideal class in OK contains an ideal whose norm is at most

MK .

This allows us to prove the following important result:

Theorem 10.7. Let d be a square-free integer, d � 1, and K � Qp?dq a quadratic field.

The class number hK is finite.

Proof. By Definition 10.6, every ideal class contains an ideal with norm not larger than

MK . Hence it remains to show there are only finitely many ideals with norm not larger

than MK . By Proposition 8.3, every such norm is a positive integer not larger than MK ,

hence there are only finitely many choices for such norms. It suffices to show that for

every fixed positive integer q ¤MK , there are only finitely many ideals I with NpIq � q.

By Corollary 8.5, we know q P I, hence pqq � I. By Corollary 8.15, we can find some

ideal J such that pqq � IJ . By Theorem 8.16, the ideal pqq has a unique factorisation
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into finitely many prime ideals, say pqq � P1P2 � � �Pr. Since I is a factor of pqq, it must

be the product of some prime ideals in the factorisation of pqq, hence there are at most

finitely many choices for such I. This completes the proof. �

Remark 10.8. This proof not only shows the finiteness of class numbers, but also provide

a recipe for computation. Namely, we can factor all ideals pqq for positive integers q ¤MK

to find all ideals with norm q. Then every ideal class is representated by some of these

ideals. By eliminating repeated ideal classes and analysing the multiplicative structure,

we should in principle understand the ideal class group.

We give one simple example as follows:

Example 10.9. Consider the quadratic field Qpiq. By Proposition 7.2, we know its ring

of integers is OK � Zris. Since d � �1, we have ∆K � �4 by Proposition 7.14. The

Minkowski bound for this field is MK � 4
π
  2. Therefore every ideal class contains

an ideal I of norm NpIq � 1. By Corollary 8.6, the only possibility is I � OK . So

there is only one ideal class, and hK � 1. By Proposition 9.5 and Corollary 9.7, the ring

OK � Zris is a PID and UFD. This is consistent with the result in Exercise 1.4. The

same argument works for every quadratic field K with MK   2.

100



10.2. Computing class numbers. We compute class numbers for quadratic fields in

some concrete examples.

In Example 10.9, we have seen that, if the Minkowski bound is smaller than 2, then the

class number hK � 1 and the class group is a trivial group. In general, we need to use

the strategy mentioned in Remark 10.8. More precisely, we need to first factor ideals of

the form pqq for all positive integers q ¤MK to find all ideals of norm q, then analyse the

relation among these ideals.

There is, in fact, a systematic way to factor any ideal of the form ppq for any prime p in

OK when K is a quadratic field.

Proposition 10.10. Let d � 1 be a square-free integer and K � Qp?dq. Then we can

factor p2q into prime ideals as follows

(1) If d � 1 pmod 4q, then p2q � p2 for some prime ideal p, which is the only ideal of

norm 2;

(2) If d � 1 pmod 8q, then p2q � p1p2 for distinct prime ideals p1 and p2, which are

the only ideals of norm 2;

(3) If d � 5 pmod 8q, then p2q is a prime ideal itself, and there is no ideal of norm 2.

Proposition 10.11. Let d � 1 be a square-free integer and K � Qp?dq. For any odd

prime p, we can factor ppq into prime ideals as follows

(1) If p � d, then ppq � p2 for some prime ideal p, which is the only ideal of norm p;

(2) If p d
p
q � 1, then ppq � p1p2 for distinct prime ideals p1 and p2, which are the only

ideals of norm p;

(3) If p d
p
q � �1, then ppq is a prime ideal itself, and there is no ideal of norm p.

Proof of Propositions 10.10 and 10.11. In both propositions, we can in fact write down

the prime ideals in the factorisations explicitly. Parts (1) and (2) can be proved by

verifying the mutual inclusions of the two sides of the equations. Part (3) can be proved

by showing the quotient ring is a field (hence an integral domain). The details of the

proofs are omitted due to limitation of time. This proof is non-examinable. �

If we want to factor pqq for some composite q, we can factor q into primes in Z, say

q � p1p2 � � � pr, then write pqq � pp1qpp2q � � � pprq and factor each ppiq using Propositions

10.10 and 10.11.

The following examples show how to compute class numbers using the general strategy

mentioned above.
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Example 10.12. Let K � Qp?�19q. We want to compute hK . Since d � �19, we have

∆K � �19 by Proposition 7.14. The Minkowski bound for this field is MK � 2
?

19
π

  3.

By Definition 10.6, every ideal class contains an ideal of norm at most 2. By Corollary

8.6, an ideal of norm 1 must be OK . Since d � �19 � 5 pmod 8q, by Proposition 10.10,

there is no ideal of norm 2. We conclude that hK � 1. By Proposition 9.5 and Corollary

9.7, the ring OK is a PID and UFD when K � Qp?�19q.

Example 10.13. Let K � Qp?�5q. We want to compute hK . Since d � �5, we have

∆K � �20 by Proposition 7.14. The Minkowski bound for this field is MK � 2
?

20
π

  3.

By Definition 10.6, every ideal class contains an ideal of norm at most 2. By Corollary

8.6, an ideal of norm 1 must be OK . Since d � �5 � 1 pmod 4q, by Proposition 10.10,

p2q � p for some prime ideal p which is the only ideal of norm 2. Therefore there are at

most 2 ideal classes, represented by OK and p. We still need to know whether they are

the same ideal class or distinct ideal classes.

Assume OK and p are in the same ideal class, then p is a principal ideal. Say, p � pαq
for some α P OK . By Proposition 7.2, we can write α � a� b

?�5 for some a, b P Z. By

Proposition 8.9, we know that |Npαq| � Nppαqq � 2, hence Npαq � �2. By Example

6.18, we know that Npαq � a2 � 5b2. Therefore we have a2 � 5b2 � �2 for some a, b P Z.

This equation has no integer solutions. Contradiction. It follows that p cannot be a

principal ideal. By Corollary 9.6, p and OK are in different ideal classes, hence OK does

have two distinct ideal classes. We conclude that hK � 2 for K � Qp?�5q.

Example 10.14. Let K � Qp?10q. We want to compute hK . Since d � 10, we have

∆K � 40 by Proposition 7.14. The Minkowski bound for this field is MK �
?

40
2

  4.

By Definition 10.6, every ideal class contains an ideal of norm at most 3. By Corollary

8.6, an ideal of norm 1 must be OK . Since d � 10 � 1 pmod 4q, by Proposition 10.10,

p2q � p2
0 for some prime ideal p which is the only ideal of norm 2. Since p 10

3
q � p 1

3
q � 1,

by Proposition 10.11, p3q � p1p2 for prime ideals p1 and p2 which are the only ideals of

norm 3. Therefore we have at most 4 ideal classes, represented by OK , p0, p1 and p2.

However, some of them might be in the same ideal class. So we still need to understand

their relations.

We first show that p0 is not a principal ideal, thus OK and p0 are in two different ideal

classes. If p0 � pαq for some α P OK . By Proposition 7.2, we can write α � a� b
?

10 for

some a, b P Z. By Proposition 8.9, we know that |Npαq| � Nppαqq � 2, hence Npαq � �2.

By Example 6.18, we know that Npαq � a2 � 10b2. Therefore we have a2 � 10b2 � �2

for some a, b P Z. This would imply a2 � �2 pmod 5q, hence either 2 or �2 must be a

quadratic residue modulo 5. However, p 2
5
q � p �2

5
q � �1. Contradiction. It follows that

p0 cannot be a principal ideal. Therefore we have at least two distinct ideal classes, given

by OK and p0.
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Finally we analyse p1 and p2. We will show that they are in the same ideal class as

p0. For this purpose we look at α � 2 � ?
10 P OK . By Example 6.18, Npαq � �6.

By Proposition 7.2, Nppαqq � |Npαq| � 6. By Corollary 8.5, we know 6 P pαq, hence

p6q � pαq. By Corollary 8.15, we can find some ideal I such that p6q � Ipαq. By Theorem

8.16, the ideal p6q has a unique factorisation into finitely many prime ideals. Indeed, we

can find it as p6q � p2qp3q � p2
0p1p2. Since pαq is a factor of p6q, it must be the product

of some prime ideals in the factorisation of p6q. On the other hand, Nppαqq � 6, so it

has to be the product of an ideal of norm 2 and an ideal of norm 3, i.e., pαq � p0p1 or

pαq � p0p2. If the first case happens, then the ideal classes p1 � p0
�1 in the ideal class

group because pαq is a principal ideal. Similarly from p2q � p2
0 and p3q � p1p2, we also

know p0
�1 � p0 and p2 � p1

�1 � p0. It follows p0 � p1 � p2. If the second case happens,

then we can prove the same result by switching the subscripts in p1 and p2. Hence the

only distinct ideal classes are the ones represented by OK and p0. We conclude hK � 2

for K � Qp?10q.
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Exercise Sheet 10

This sheet is NOT due in the lecture on Tuesday 9th December, and will be discussed in

an exercise class in the same week.

Exercise 10.1. Some computation of class numbers.

(1) Compute the class number of K � Qp?2q.
(2) Compute the class number of K � Qp?6q. (Hint: what is norm of I � p2�?6q?)

(3) Compute the class number of K � Qp?�13q. (Hint: at some point you need to

explain why the only ideal of norm 4 is the principal ideal p2q.)
Exercise 10.2. Fermat’s two square problem (revisited).

Let p be a positive prime such that p � 1 pmod 4q.

(1) Show that there exists some u P Z, such that u2 � 1 � 0 pmod pq.
(2) Consider the lattice L � tm1e1 � m2e2 | m1,m2 P Zu where e1 � p1, uq and

e2 � p0, pq. Compute the volume of its fundamental domain.

(3) Show that the disk D � tpx, yq P R2 | x2� y2   3
2
pu contains at least one non-zero

point pa, bq P L. Show that 0   a2 � b2   2p.

(4) Use the generators of L to show b � ua pmod pq, then show a2 � b2 � 0 pmod pq.
(5) Conclude from parts (3) and (4) that p � a2 � b2.

Exercise 10.3. Minkowski bound for real quadratic fields.

Supply the proofs of Propositions 10.4 and 10.5 in the following steps.

(1) For any real numbers x, y P R, show that |xy| ¤ 1
4
p|x| � |y|q2.

(2) Let r �
�

2NpIq |∆K |
1
2

	 1
2
. Show that the square S � tpx, yq P R2 | |x| � |y| ¤ ru

contains at least one non-zero point in LI . (Hint: Proposition 9.14.)

(3) Reinterpret the result in part (2) as follows: there exists some non-zero α �
a� b

?
d P I, such that for x � a� b

?
d and y � a� b

?
d, we have |x| � |y| ¤ r.

(4) Use parts (1) and (3) to show that |Npαq| � |xy| ¤ 1
4
r2 � 1

2
NpIq |∆K |

1
2 . This

proves Proposition 10.4.

(5) Prove Proposition 10.5. (Hint: almost identical to the proof of Proposition 10.3.)

Exercise 10.4. Review and reinforce knowledge.

If you have any questions, or you want to see more examples of anything in this course,

please write them down.
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Solutions to Exercise Sheet 10

Solution 10.1. Some computation of class numbers.

(1) We have d � 2, hence ∆K � 4d � 8, and MK � 1
2

?
8 � ?

2   2. Therefore every

ideal class contains an ideal of norm 1, which must be OK . It follows that hK � 1.

(2) We have d � 6, hence ∆K � 4d � 24, and MK � 1
2

?
24 � ?

6   3. Therefore

every ideal class contains an ideal of norm 1 or 2. An ideal of norm 1 must be

OK . By Proposition 10.10, since d � 1 pmod 4q, we have p2q � p2 and p is the

only ideal of norm 2. Therefore every ideal class contains OK or p.

It remains to determine whether OK and p belong to the same ideal class, or

equivalently, whether p is a principal ideal. Since p is the only ideal of norm 2, if

we can find a principal ideal pαq of norm 2, then p � pαq is a principal ideal. If

we assume α � a� b
?

6, then Nppαqq � |Npαq| � |a2 � 6b2|. Hence Nppαqq � 2 if

and only if a2� 6b2 � �2. We observe that a � 2 and b � 1 satisfy a2� 6b2 � �2.

Therefore the norm of the principal ideal p2�?
6q is 2. By the above analysis we

know that p � p2�?6q is a principal ideal, hence OK and p are in the same ideal

class. It follows that hK � 1.

(3) We have d � �13, hence ∆K � 4d � �52, and MK � 2
π

?
52   5. Therefore every

ideal class contains an ideal of norm 1, 2, 3 or 4. An ideal of norm 1 must be OK .

By Proposition 10.10, since d � 1 pmod 4q, we have p2q � p2 where p is the only

ideal of norm 2. By Proposition 10.11, since p �13
3
q � p �1

3
q � �1, p3q itself is a

prime ideal and there is no ideal of norm 3. By the proof of Theorem 10.7, every

ideal of norm 4 must be the product of some prime factors of the principal ideal

p4q. We realise that p4q � p2qp2q � p4, hence the only ideals which divide p4q are

pi for 0 ¤ i ¤ 4. Since Nppq � 2, by Lemma 10.2, the only one among them which

has norm 4 is p2 � p2q. In other words, the ideal of norm 4 is p2q. So we conclude

that every ideal class contains an ideal among OK , p and p2q.
It is clear that p2q is a principal ideal, hence is in the same ideal class as OK .

We claim that p is not a prime ideal. If p � pαq for some non-zero α P OK , we

assume α � a � b
?�13, then Nppαqq � |Npαq| � |a2 � 13b2|. On the other hand

Nppαqq � Nppq � 2, hence a2 � 13b2 � �2. It is clear that a2 � 13b2 � �2 has

no integer solutions, as the left-hand side is non-negative. It is also easy to see

that a2 � 13b2 � 2 has no integer solutions, since a2 ¤ 2 implies a2 � 0 or 1, and

13b2 ¤ 2 implies b2 � 0, which cannot add up to 2. We conclude that p is not a

principal ideal, hence it is not in the same ideal class as OK . Therefore hK � 2.

Solution 10.2. Fermats two square problem (revisited).
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(1) Since p � 1 pmod 4q, �1 is a quadratic residue modulo p. It follows that there

exists some u P Z, such that u2 � �1 pmod pq; or equivalently, u2�1 � 0 pmod pq.
(2) Assume the fundamental domain is T , then

volpT q �
�����det

�
1 0

u p

������ � p.

(3) The volume of the disk is volpDq � π � 3
2
p � 3

2
πp ¡ 4p � 4 volpT q. By Theorem

9.11, D contains at least one non-zero point in L, say pa, bq P L. Since a and b

are not simultaneously zero, we have a2 � b2 ¡ 0. On the other hand pa, bq P D
implies a2 � b2   3

2
p   2p.

(4) Since pa, bq P L, we have that pa, bq � m1p1, uq � m2p0, pq for some m1,m2 P Z.

Therefore a � m1 and b � m1u�m2p � ua� pm2 � ua pmod pq. It follows that

a2 � b2 � a2 � u2a2 � a2pu2 � 1q � 0 pmod pq, where the last congruence is due

to part (1).

(5) From part (4) we know that a2� b2 is a multiple of p, while within the range given

in part (3), the only multiple of p is p itself. Hence a2 � b2 � p.

Solution 10.3. Minkowski bound for real quadratic fields.

(1) The inequality |xy| ¤ 1
4
p|x| � |y|q2 is equivalent to 4|xy| ¤ p|x| � |y|q2, which

is further equivalent to p|x| � |y|q2 � 4|xy| ¥ 0. However the left-hand side is

|x|2 � 2|xy| � |y|2 � 4|xy| � |x|2 � 2|xy| � |y|2 � p|x| � |y|q2 ¥ 0. Hence the

inequality holds.

(2) By Proposition 9.14, the volume of the fundamental domain is volpTIq � NpIq|∆K | 12 .

On the other hand, the volume of the square S is given by volpSq � 2r2 �
4NpIq|∆K | 12 � 4 volpTIq. By Corollary 9.12, S contains at least one non-zero

point in LI .

(3) By part (2) and the definition of LI in Proposition 9.14, S contains a non-zero point

in LI , which is given by pa � b
?
d, a � b

?
dq for some non-zero α � a � b

?
d P I.

We write x � a � b
?
d and y � a � b

?
d, then by the definition of S we have

|x| � |y| ¤ r.

(4) For the α chosen in part (3), we have Npαq � a2�b2d � pa�b?dqpa�b?dq � xy.

Hence |Npαq| � |xy| ¤ 1
4
p|x| � |y|q2 ¤ 1

4
r2 � 1

2
NpIq|∆K | 12 , in which the first

inequality follows from part (1) and the second inequality follows from part (3).

(5) By Theorem 9.2, the ideal class C has an inverse in the ideal class group. We

denote this inverse ideal class by J where J is any representative. Then by part

(4) (which is Proposition 10.4), there exists a non-zero element β P J such that

|Npβq| ¤ 1
2
NpJq |∆K |

1
2 . Since we have pβq � J , there exists some ideal I such that
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IJ � pβq by Corollary 8.15. Since the ideal class containing pβq is the identity

element in the ideal class group, I and J are inverse of each other, hence I is an

ideal in C. It remains to show NpIq satisfies the given bound.

By Lemma 10.2 and Proposition 8.9, we have the following calculation

NpIqNpJq � NpIJq � Nppβqq � |Npβq| ¤ 1

2
NpJq |∆K |

1
2 .

Since NpJq is a positive integer by Proposition 8.3, we cancel it to get NpIq ¤
1
2
|∆K |

1
2 as required.
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