MA40238 NUMBER THEORY (2014/15 SEMESTER 1) MOCK EXAMINATION

Problem 1.

(a) What does it mean to say a and b are congruent modulo m, where $a, b, m \in \mathbb{Z}$ and $m \neq 0$?
(b) Define the Möbius μ-function.
(c) State a sufficient and necessary condition for the congruence equation $a x \equiv b(\bmod m)$ to have solutions, where $a, b, m \in \mathbb{Z}, a \neq 0$ and $m \neq 0$.
(d) Find all integer solutions to the equation $7 x-13 y=2$.
(e) Show that 2 is a primitive root modulo 11 .
(f) State and prove the Chinese Remainder Theorem: Suppose that $m_{1}, m_{2}, \cdots, m_{k}$ are pairwise coprime non-zero integers and $m=m_{1} m_{2} \cdots m_{k}$. Then the system of congruences

$$
x \equiv b_{1} \quad\left(\bmod m_{1}\right), \quad x \equiv b_{2} \quad\left(\bmod m_{2}\right), \quad \cdots, \quad x \equiv b_{k} \quad\left(\bmod m_{k}\right)
$$

has a unique solution modulo m.
(g) Let p and q be positive primes, $p \neq q$. Prove that

$$
p^{q}+q^{p} \equiv p+q \quad(\bmod p q) .
$$

Problem 2.

(a) What does it mean to say a is a quadratic residue modulo m, where $a, m \in \mathbb{Z}, m \neq 0$ and $\operatorname{hcf}(a, m)=1$?
(b) Define the Jacobi symbol $\left(\frac{a}{b}\right)$, where $a, b \in \mathbb{Z}, b$ is positive and odd.
(c) Which of the follow four expressions has/have value 1? Justify your answers. If you use any results proved in class, state them clearly.

$$
\begin{equation*}
\left(\frac{-1}{15}\right), \quad\left(\frac{9}{15}\right), \quad\left(\frac{17}{15}\right)\left(\frac{15}{17}\right) . \tag{3}
\end{equation*}
$$

(d) Compute the Legendre symbol $\left(\frac{219}{383}\right)$.
(e) Using Euler's criterion proved in lectures, which should be stated clearly, prove the following formula: for any positive odd prime p,

$$
\left(\frac{-1}{p}\right)= \begin{cases}1 & \text { if } p \equiv 1 \quad(\bmod 4) \tag{3}\\ -1 & \text { if } p \equiv 3 \quad(\bmod 4)\end{cases}
$$

(f) State and prove Gauss' Lemma.
(g) Let p be a positive prime, $p \equiv 3(\bmod 4)$. Prove that there are infinitely many positive odd primes q, which are quadratic non-residues modulo p.

Problem 3.

(a) Write down the definition of an algebraic number field.
(b) Let $K=\mathbb{Q}(\sqrt{d})$ be a quadratic field ($d \neq 1$ and square-free). Write down the set of all algebraic integers in K. Write down an integral basis for \mathcal{O}_{K}.

In parts (c), (d), (e) and (f), K is an arbitrary number field of degree n over \mathbb{Q}, and \mathcal{O}_{K} is the ring of algebraic integers in K.
(c) Define the discriminant of the n-tuple $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n} \in K$. Define the discriminant of a non-zero ideal I in \mathcal{O}_{K} and the discriminant of K.
(d) Let α be a non-zero element in \mathcal{O}_{K}, and I be the principal ideal generated by α. State a result proved in class, which relates the two norms $N(\alpha)$ and $N(I)$.
(e) State the ascending chain condition for \mathcal{O}_{K}.
(f) State the theorem of unique factorisation of ideals in \mathcal{O}_{K}. Prove the uniqueness part of this theorem.
(g) Let $V=\left\{\gamma_{1}, \gamma_{2}, \cdots, \gamma_{n}\right\}$ be a finite set of non-zero complex numbers. Suppose a complex number α has the property that for each $i=1,2, \cdots, n$, the product $\alpha \gamma_{i}$ can be written as a rational linear combination of elements in the set V. Prove that α is an algebraic number.

Problem 4.

In parts (a) and (b), K is an arbitrary number field, and \mathcal{O}_{K} is the ring of algebraic integers in K.
(a) What are the definition of an ideal class in \mathcal{O}_{K}, the ideal class group of K and the class number of K ?
(b) State a result proved in lectures, which relates the class number h_{K} and a property of the ring of algebraic integers \mathcal{O}_{K}.
(c) What is a lattice of rank 2 in \mathbb{R}^{2} ? What is the fundamental domain of the lattice? [2]
(d) State and prove Minkowski's Theorem.
(e) Let $K=\mathbb{Q}(\sqrt{d})$ be a quadratic field, where $d \neq 1$ is a square-free integer. Write down the Minkowski bound for K.
(f) Compute the class number of $K=\mathbb{Q}(\sqrt{13})$.
(g) Consider the quadratic field $K=\mathbb{Q}(\sqrt{d})$, where d is a square-free integer, $d<-2$ and $d \not \equiv 1(\bmod 4)$. Let \mathcal{O}_{K} be the ring of algebraic integers in K. Prove that there is an ideal I in \mathcal{O}_{K}, such that $N(I)=2$ and I is not principal. Conclude that $h_{K} \geqslant 2$.

