MA40238 NUMBER THEORY (2014/15 SEMESTER 1) MOCK EXAMINATION SOLUTIONS

Problem 1.

(a) We say a and b are congruent modulo m if m divides a - b. [2]

(b) For any positive integer n, $\mu(n) = 1$ if n = 1; $\mu(n) = 0$ if n is not square-free; $\mu(n) = (-1)^l$ if $n = p_1 p_2 \cdots p_l$ is the product of l distinct primes. [2]

(c) Let hcf(a, m) = d, then the congruence equation $ax \equiv b \pmod{m}$ has solutions if and only if $d \mid b$. [2]

(d) Consider the congruence $7x \equiv 2 \pmod{13}$. By adding multiples of 13 on the righthand side we get $7x \equiv 2 \equiv 28 \pmod{13}$. By cancellation law we get $x \equiv 4 \pmod{13}$. Hence x = 13k + 4 for any $k \in \mathbb{Z}$. By substitution, we have 7(13k + 4) - 13y = 2, hence y = 7k + 2. The solutions to the original equation is given by x = 13k + 4, y = 7k + 2where $k \in \mathbb{Z}$. [3]

(e) Since 11 is an odd prime, \mathbb{Z}_{11}^* is a cyclic group of order 10. To show 2 is a primitive root modulo 11, we need to show 2 has order 10 modulo 11. In other words, its order is not 1, 2 or 5. Indeed, $2^1 \equiv 2 \pmod{11}$, $2^2 \equiv 4 \pmod{11}$, $2^5 = 32 \equiv 10 \pmod{11}$. None of them is congruent to 1 modulo 29, hence 2 is a primitive root modulo 11. [3]

(f) We prove it by induction on k. For k = 1 there is nothing to prove. For k = 2, an integer solution to $x \equiv b_1 \pmod{m_1}$ is of the form $x = m_1q + b_1$. So we need to have $m_1q + b_1 \equiv b_2 \pmod{m_2}$, or $m_1q \equiv b_2 - b_1 \pmod{m_2}$. Since $\operatorname{hcf}(m_1, m_2) = 1$, it has a unique solution for q, say $q \equiv q_0 \pmod{m_2}$. Or equivalently, $q = m_2r + q_0$ for any $r \in \mathbb{Z}$. Hence $x = m_1m_2r + (m_1q_0 + b_1)$ for any $r \in \mathbb{Z}$, which is the unique solution for x modulo $m = m_1m_2$.

For general k, suppose we have proved the result for k - 1. That is, the first k - 1 congruence equations have a unique common solution $x \equiv s \pmod{m'}$ for some s, where $m' = m_1 m_2 \cdots m_{k-1}$. Then the problem reduces to a system of two congruences $x \equiv s \pmod{m'}$ and $x \equiv b_k \pmod{m_k}$. By the case for k = 2 above, there is a unique solution for x modulo $m = m'm_k$. This finishes the induction. [4]

(g) We have $(p^q + q^p) - (p + q) = (p^q - p) + (q^p - q)$. By Fermat's Little Theorem, since p and q are distinct primes, $p^{q-1} \equiv 1 \pmod{q}$, hence $p^{q-1} - 1$ is a multiple of q. Therefore $p^q - p = p(p^{q-1} - 1)$ is a multiple of pq. By switching p and q we know that $q^p - q = q(q^{p-1} - 1)$ is also a multiple of pq, so is the sum $(p^q - p) + (q^p - q)$. It follows that $p^q + q^p \equiv p + q \pmod{pq}$. [4]

Date: January 16, 2015.

Problem 2.

(a) We say a is a quadratic residue modulo m if $x^2 \equiv a \pmod{m}$ has a solution. [2]

(b) Let $b = p_1 p_2 \cdots p_m$ be its prime factorisation, where p_1, p_2, \cdots, p_m are not necessarily distinct primes. The Jacobi symbol $\left(\frac{a}{b}\right)$ is defined by $\left(\frac{a}{b}\right) = \left(\frac{a}{p_1}\right)\left(\frac{a}{p_2}\right)\cdots\left(\frac{a}{p_m}\right)$. [2]

(c) Since $\left(\frac{-1}{b}\right) = 1$ if $b \equiv 1 \pmod{4}$ and -1 if $b \equiv -1 \pmod{4}$, we get $\left(\frac{-1}{15}\right) = -1$. By definition, $\left(\frac{9}{15}\right) = \left(\frac{9}{3}\right)\left(\frac{9}{5}\right) = 0$ because 9 is a multiple of 3. By quadratic reciprocity for Jacobi symbols, when a and b are coprime positive odd integers, we have $\left(\frac{a}{b}\right)\left(\frac{b}{a}\right) = 1$ if $a \equiv 1 \pmod{4}$ or $b \equiv 1 \pmod{4}$, and -1 if $a \equiv b \equiv 3 \pmod{4}$. Since $17 \equiv 1 \pmod{4}$, we have $\left(\frac{17}{15}\right)\left(\frac{15}{17}\right) = 1$. Hence only the third expression takes value 1. [3]

(d) Since $219 \equiv 383 \equiv 3 \pmod{4}$, by quadratic reciprocity for Jacobi symbols, we have $\left(\frac{219}{383}\right) = -\left(\frac{383}{219}\right) = -\left(\frac{164}{219}\right) = -\left(\frac{4}{219}\right)\left(\frac{41}{219}\right) = -\left(\frac{41}{219}\right)$. Since $41 \equiv 1 \pmod{4}$, we have $-\left(\frac{41}{219}\right) = -\left(\frac{219}{41}\right) = -\left(\frac{14}{41}\right) = -\left(\frac{2}{41}\right)\left(\frac{7}{41}\right) = -\left(\frac{7}{41}\right)$, where the last equality is due to $41 \equiv 1 \pmod{4}$, we get $-\left(\frac{7}{41}\right) = -\left(\frac{41}{7}\right) = -\left(\frac{-1}{7}\right) = -(-1) = 1$, where the last equality is due to $7 \equiv 3 \pmod{4}$. [3]

(e) Euler's criterion. For any integer a and odd prime p, we have $\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \pmod{p}$.

It follows that $\left(\frac{-1}{p}\right) = (-1)^{\frac{p-1}{2}}$. If $p \equiv 1 \pmod{4}$, then $\frac{p-1}{2}$ is an even integer, hence $\left(\frac{-1}{p}\right) = 1$; if $p \equiv 3 \pmod{4}$, then $\frac{p-1}{2}$ is an odd integer, hence $\left(\frac{-1}{p}\right) = -1$. [3] (f) Gauss' Lemma. Let p be an odd prime, $r = \frac{p-1}{2}$, $p \nmid a$, and μ the number of integers among $a, 2a, \cdots, ra$ which have negative least residues modulo p. Then $\left(\frac{a}{p}\right) = (-1)^{\mu}$.

Proof. Let m_l or $-m_l$ be the least residue of la modulo p, where m_l is positive. As l ranges between 1 and r, μ is clearly the number of minus signs that occur in this way. We claim that $m_l \neq m_k$ for any $l \neq k$ and $1 \leq l, k \leq r$. For, if $m_l = m_k$, then $la \equiv \pm ka \pmod{p}$, and since $p \nmid a$ this implies that $l \pm k \equiv 0 \pmod{p}$. The latter congruence is impossible since $l \neq k$ and $|l \pm k| \leq |l| + |k| \leq p - 1$. It follows that the sets $\{1, 2, \dots, r\}$ and $\{m_1, m_2, \dots, m_r\}$ coincide. Multiply the congruences

 $1 \cdot a \equiv \pm m_1 \pmod{p}, \quad 2 \cdot a \equiv \pm m_2 \pmod{p}, \quad \dots, \quad r \cdot a \equiv \pm m_r \pmod{p}.$

Notice that the number of negative signs on the right hand sides is μ , we obtain

$$r! \cdot a^r \equiv (-1)^{\mu} \cdot r! \pmod{p}.$$

Since $p \nmid r!$, this yields

 $a^r \equiv (-1)^{\mu} \pmod{p}.$

By Euler's criterion $a^r = a^{\frac{p-1}{2}} \equiv \left(\frac{a}{p}\right) \pmod{p}$ and the result follows. [3]

(g) We prove by contradiction. Assume there are only finitely many odd primes which are quadratic non-residues modulo p, given by the set $S = \{q_1, q_2, \dots, q_s\}$. We consider $N = 2pq_1q_2 \cdots q_s - 1$. We realise that $N \equiv -1 \pmod{p}$, hence $\left(\frac{N}{p}\right) = \left(\frac{-1}{p}\right) = -1$, since $p \equiv 3 \pmod{4}$. Since N > 1 is odd, we have the factorisation $N = p_1p_2 \cdots p_t$ where p_1, p_2, \cdots, p_t are not necessarily distinct odd primes. For each $i = 1, 2, \cdots, t$, we have $p_i \notin S$ and $p_i \neq p$, hence p_i is a quadratic residue modulo p, which implies $\left(\frac{p_i}{p}\right) = 1$. Therefore $\left(\frac{N}{p}\right) = \left(\frac{p_1}{p}\right)\left(\frac{p_2}{p}\right)\cdots\left(\frac{p_t}{p}\right) = 1$. Contradiction. [4]

Problem 3.

(a) An algebraic number field is a field K, such that $\mathbb{Q} \subseteq K \subseteq \mathbb{C}$, and K has finite degree (or finite dimensional vector space) over \mathbb{Q} . [2]

(b) Algebraic integers in $K = \mathbb{Q}(\sqrt{d})$ are given by $\{a + b\sqrt{d} \mid a, b \in \mathbb{Z}\}$ if $d \equiv 2$ or 3 (mod 4); $\{a + b \cdot \frac{1+\sqrt{d}}{2} \mid a, b \in \mathbb{Z}\}$ if $d \equiv 1 \pmod{4}$. An integral basis for \mathcal{O}_K is given by $\{1, \sqrt{d}\}$ if $d \equiv 2$ or 3 (mod 4); $\{1, \frac{1+\sqrt{d}}{2}\}$ if $d \equiv 1 \pmod{4}$. [3]

(c) We define the discriminant of the n-tuple to be

$$\Delta(\alpha_1, \alpha_2, \cdots, \alpha_n) = \det \begin{pmatrix} T(\alpha_1 \alpha_1) & T(\alpha_1 \alpha_2) & \cdots & T(\alpha_1 \alpha_n) \\ T(\alpha_2 \alpha_1) & T(\alpha_2 \alpha_2) & \cdots & T(\alpha_2 \alpha_n) \\ \vdots & \vdots & \ddots & \vdots \\ T(\alpha_n \alpha_1) & T(\alpha_n \alpha_2) & \cdots & T(\alpha_n \alpha_n) \end{pmatrix}.$$

For any non-zero ideal I in \mathcal{O}_K , the discriminant of an integral basis for I is called the discriminant of the ideal I. The discriminant of \mathcal{O}_K (or the discriminant of an integral basis for \mathcal{O}_K) is called the discriminant of the number field K. [3]

(d) Let $I = (\alpha)$ for some non-zero element $\alpha \in \mathcal{O}_K$. Then $N(I) = |N(\alpha)|$. [2]

(e) In the ring of integers \mathcal{O}_K , every ascending chain of ideals $I_1 \subseteq I_2 \subseteq I_3 \subseteq \cdots$ stabilises. In other words, there is a positive integer N such that $I_m = I_{m+1}$ for all $m \ge N$. [2]

(f) Theorem of Unique Factorsiation. Let K be a number field and \mathcal{O}_K its ring of integers. Then every non-zero proper ideal in \mathcal{O}_K can be uniquely written as a finite product of prime ideals up to reordering factors.

Proof of Uniqueness. Suppose $P_1P_2 \cdots P_r = I = Q_1Q_2 \cdots Q_s$ where P_i 's and Q_j 's are prime ideals. Then $P_1 \supseteq Q_1Q_2 \cdots Q_s$. We claim that $P_1 \supseteq Q_j$ for some Q_j . If not, then for each $j = 1, 2, \cdots, s$, we can find $a_j \in Q_j \setminus P_1$. Since P_1 is a prime ideal, $a_1a_2 \cdots a_s \notin P_1$. However $a_1a_2 \cdots a_s \in Q_1Q_2 \cdots Q_s \subseteq P_1$. Contradiction.

Therefore, by renumbering the Q_j 's if necessary, we can assume that $P_1 \supseteq Q_1$. Since Q_1 is a prime ideal, it is also a maximal ideal, so we conclude that $P_1 = Q_1$.

Using cancellation law we obtain $P_2 \cdots P_r = Q_2 \cdots Q_s$. Continuing in the same way we eventually find that r = s and $P_i = Q_i$ for all *i* after renumbering. [4]

(g) By assumption, for each $i = 1, 2, \dots, n$, we can write $\alpha \gamma_i = \sum_{j=1}^n a_{ij} \gamma_j$, where each $a_{ij} \in \mathbb{Q}$. Using the language of linear algebra, we have $\alpha \cdot \mathbf{v} = \mathbf{M} \cdot \mathbf{v}$, where

$$\mathbf{M} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}, \quad \mathbf{v} = \begin{pmatrix} \gamma_1 \\ \gamma_2 \\ \vdots \\ \gamma_n \end{pmatrix}.$$

Since $\mathbf{v} \neq 0$, we see that α is an eigenvalue of the square matrix \mathbf{M} . In other words, α is a solution of the equation $\det(x \cdot \mathbf{I} - \mathbf{M}) = 0$. Since all entries of \mathbf{M} are rational numbers, the left-hand side of the equation is a polynomial with rational coefficients. Therefore α is an algebraic number. [4]

Problem 4.

(a) Two non-zero ideals I, J in \mathcal{O}_K are said to be equivalent, $I \sim J$, if there exist non-zero $\alpha, \beta \in \mathcal{O}_K$, such that $(\alpha)I = (\beta)J$. This is an equivalence relation. Each equivalence class is called an ideal class. The group of ideal classes in \mathcal{O}_K under multiplication is called the ideal class group of K. The order of the ideal class group is called the class number of K. [4]

(b) We have $h_K = 1$ if and only if \mathcal{O}_K is a PID.

[2]

(c) Let e_1, e_2 be two linearly independent vectors in \mathbb{R}^2 . The abelian group $L = \{m_1e_1 + m_2e_2 \mid m_1, m_2 \in \mathbb{Z}\}$ is called a lattice of rank 2 in \mathbb{R}^2 . The fundamental domain of L is the set $T = \{a_1e_1 + a_2e_2 \mid a_1, a_2 \in \mathbb{R}, 0 \leq a_1 < 1, 0 \leq a_2 < 1\}$. [2]

(d) *Minkowski's Theorem.* Let L be a lattice of rank 2 in \mathbb{R}^2 with fundamental domain T. Let X be a centrally symmetric convex subset of \mathbb{R}^2 . If vol(X) > 4 vol(T), then X contains a non-zero point of L.

Proof. We first shrink X to half of its size in length; precisely speaking, we consider $Y = \{p \in \mathbb{R}^2 \mid 2p \in X\}$. Then $\operatorname{vol}(Y) = \frac{1}{4}\operatorname{vol}(X) > \operatorname{vol}(T)$.

For every $h \in L$, we define $h + T = \{h + p \mid p \in T\}$ which is the transport of the fundamental domain along the vector h. It is clear that \mathbb{R}^2 becomes the disjoint union of these parallelograms. Let $Y_h = Y \cap (h+T)$ is the part of Y which lies in the parallelogram h + T for each $h \in L$, then Y becomes the disjoint union of all Y_h 's, hence $\sum_{h \in L} \operatorname{vol}(Y_h) = \operatorname{vol}(Y) > \operatorname{vol}(T)$. We transport each Y_h back to the fundamental domain, say $Y'_h = \{q \in T \mid h + q \in Y_h\}$. Then $\sum_{h \in L} \operatorname{vol}(Y'_h) = \sum_{h \in L} \operatorname{vol}(Y_h) > \operatorname{vol}(T)$. Since each $Y'_h \subseteq T$, this inequality implies they are not disjoint. Therefore there exist $h_1, h_2 \in L$, $h_1 \neq h_2$, such that we can find some $q \in Y'_{h_1} \cap Y'_{h_2}$. That implies $p_1 = h_1 + q \in Y_{h_1} \subseteq Y$ and $p_2 = h_2 + q \in Y_{h_2} \subseteq Y$, hence we found $p_1, p_2 \in Y$, such that $p_1 - p_2 = h_1 - h_2 \in L$.

Since $p_1, p_2 \in Y$, we have $2p_1, 2p_2 \in X$. Since X is centrally symmetric, $-2p_2 \in X$. Since X is convex, $\frac{1}{2}(2p_1) + \frac{1}{2}(-2p_2) \in X$, which is $h_1 - h_2$, a non-zero point in L. [4]

(e) The Minkowski bound M_K is $\frac{2}{\pi} |\Delta_K|^{\frac{1}{2}}$ if d < 0; and $\frac{1}{2} |\Delta_K|^{\frac{1}{2}}$ if d > 0. [2]

(f) The Minkowski bound is $M_K = \frac{1}{2}\sqrt{13} < 2$, hence each ideal class contains an ideal of norm at most 1, which has to be \mathcal{O}_K . Therefore the class number of $\mathbb{Q}(\sqrt{13})$ is 1. [2]

(g) By the formula given in class, since $d \neq 1 \pmod{4}$, we have the factorisation $(2) = \mathfrak{p}^2$ for some prime ideal \mathfrak{p} of norm 2. Take $I = \mathfrak{p}$, then we have an ideal with N(I) = 2. It remains to show that I is not principal.

We prove by contradiction. Assume there exists a non-zero $\alpha \in \mathcal{O}_K$ such that $I = (\alpha)$, then $|N(\alpha)| = N(I) = 2$, hence $N(\alpha) = \pm 2$. Since $d \neq 1 \pmod{4}$, we can write $\alpha = a + b\sqrt{d}$ for some $a, b \in \mathbb{Z}$. Then $N(\alpha) = a^2 - b^2 d = a^2 + b^2(-d) = \pm 2$. Since -d > 0, we must have $a^2 + b^2(-d) = 2$. Since -d > 2, we must have b = 0, otherwise $a^2 + b^2(-d) > 0 + 2 = 2$. It follows that $a^2 = 2$, which has no integer solution. Contradiction.

Since I is not a principal ideal, I and \mathcal{O}_K are not in the same ideal class. Hence there are at least two ideal classes. In other words, $h_K \ge 2$. [4]