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Problem 1.

(a) We say a and b are congruent modulo m if m divides a� b. [2]

(b) For any positive integer n, µpnq � 1 if n � 1; µpnq � 0 if n is not square-free;

µpnq � p�1ql if n � p1p2 � � � pl is the product of l distinct primes. [2]

(c) Let hcfpa,mq � d, then the congruence equation ax � b pmod mq has solutions if and

only if d � b. [2]

(d) Consider the congruence 7x � 2 pmod 13q. By adding multiples of 13 on the right-

hand side we get 7x � 2 � 28 pmod 13q. By cancellation law we get x � 4 pmod 13q.
Hence x � 13k � 4 for any k P Z. By substitution, we have 7p13k � 4q � 13y � 2, hence

y � 7k � 2. The solutions to the original equation is given by x � 13k � 4, y � 7k � 2

where k P Z. [3]

(e) Since 11 is an odd prime, Z�11 is a cyclic group of order 10. To show 2 is a primitive

root modulo 11, we need to show 2 has order 10 modulo 11. In other words, its order is

not 1, 2 or 5. Indeed, 21 � 2 pmod 11q, 22 � 4 pmod 11q, 25 � 32 � 10 pmod 11q. None

of them is congruent to 1 modulo 29, hence 2 is a primitive root modulo 11. [3]

(f) We prove it by induction on k. For k � 1 there is nothing to prove. For k � 2, an

integer solution to x � b1 pmod m1q is of the form x � m1q � b1. So we need to have

m1q � b1 � b2 pmod m2q, or m1q � b2 � b1 pmod m2q. Since hcfpm1,m2q � 1, it has a

unique solution for q, say q � q0 pmod m2q. Or equivalently, q � m2r � q0 for any r P Z.

Hence x � m1m2r� pm1q0 � b1q for any r P Z, which is the unique solution for x modulo

m � m1m2.

For general k, suppose we have proved the result for k � 1. That is, the first k � 1

congruence equations have a unique common solution x � s pmod m1q for some s, where

m1 � m1m2 � � �mk�1. Then the problem reduces to a system of two congruences x � s

pmod m1q and x � bk pmod mkq. By the case for k � 2 above, there is a unique solution

for x modulo m � m1mk. This finishes the induction. [4]

(g) We have ppq � qpq � pp � qq � ppq � pq � pqp � qq. By Fermat’s Little Theorem,

since p and q are distinct primes, pq�1 � 1 pmod qq, hence pq�1 � 1 is a multiple of q.

Therefore pq � p � pppq�1 � 1q is a multiple of pq. By switching p and q we know that

qp � q � qpqp�1 � 1q is also a multiple of pq, so is the sum ppq � pq � pqp � qq. It follows

that pq � qp � p� q pmod pqq. [4]
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Problem 2.

(a) We say a is a quadratic residue modulo m if x2 � a pmod mq has a solution. [2]

(b) Let b � p1p2 � � � pm be its prime factorisation, where p1, p2, � � � , pm are not necessarily

distinct primes. The Jacobi symbol p a
b
q is defined by p a

b
q � p a

p1
qp a
p2
q � � � p a

pm
q. [2]

(c) Since p �1
b
q � 1 if b � 1 pmod 4q and �1 if b � �1 pmod 4q, we get p �1

15
q � �1. By

definition, p 9
15
q � p 9

3
qp 9

5
q � 0 because 9 is a multiple of 3. By quadratic reciprocity for

Jacobi symbols, when a and b are coprime positive odd integers, we have p a
b
qp b

a
q � 1 if

a � 1 pmod 4q or b � 1 pmod 4q, and �1 if a � b � 3 pmod 4q. Since 17 � 1 pmod 4q,
we have p 17

15
qp 15

17
q � 1. Hence only the third expression takes value 1. [3]

(d) Since 219 � 383 � 3 pmod 4q, by quadratic reciprocity for Jacobi symbols, we have

p 219
383

q � �p 383
219

q � �p 164
219

q � �p 4
219
qp 41

219
q � �p 41

219
q. Since 41 � 1 pmod 4q, we have

�p 41
219
q � �p 219

41
q � �p 14

41
q � �p 2

41
qp 7

41
q � �p 7

41
q, where the last equality is due to 41 � 1

pmod 8q. Again by 41 � 1 pmod 4q, we get �p 7
41
q � �p 41

7
q � �p �1

7
q � �p�1q � 1,

where the last equality is due to 7 � 3 pmod 4q. [3]

(e) Euler’s criterion. For any integer a and odd prime p, we have p a
p
q � a

p�1
2 pmod pq.

It follows that p �1
p
q � p�1q p�1

2 . If p � 1 pmod 4q, then p�1
2

is an even integer, hence

p �1
p
q � 1; if p � 3 pmod 4q, then p�1

2
is an odd integer, hence p �1

p
q � �1. [3]

(f) Gauss’ Lemma. Let p be an odd prime, r � p�1
2

, p � a, and µ the number of integers

among a, 2a, � � � , ra which have negative least residues modulo p. Then
� a
p

	
� p�1qµ.

Proof. Let ml or �ml be the least residue of la modulo p, where ml is positive. As l

ranges between 1 and r, µ is clearly the number of minus signs that occur in this way.

We claim that ml � mk for any l � k and 1 ¤ l, k ¤ r. For, if ml � mk, then la � �ka
pmod pq, and since p � a this implies that l � k � 0 pmod pq. The latter congruence is

impossible since l � k and |l � k| ¤ |l| � |k| ¤ p� 1. It follows that the sets t1, 2, � � � , ru
and tm1,m2, � � � ,mru coincide. Multiply the congruences

1 � a � �m1 pmod pq, 2 � a � �m2 pmod pq, � � � , r � a � �mr pmod pq.
Notice that the number of negative signs on the right hand sides is µ, we obtain

r! � ar � p�1qµ � r! pmod pq.
Since p � r!, this yields

ar � p�1qµ pmod pq.
By Euler’s criterion ar � a

p�1
2 � p a

p
q pmod pq and the result follows. [3]

(g) We prove by contradiction. Assume there are only finitely many odd primes which

are quadratic non-residues modulo p, given by the set S � tq1, q2, � � � , qsu. We consider

N � 2pq1q2 � � � qs � 1. We realise that N � �1 pmod pq, hence p N
p
q � p �1

p
q � �1, since

p � 3 pmod 4q. Since N ¡ 1 is odd, we have the factorisation N � p1p2 � � � pt where

p1, p2, � � � , pt are not necessarily distinct odd primes. For each i � 1, 2, � � � , t, we have

pi R S and pi � p, hence pi is a quadratic residue modulo p, which implies p pi
p
q � 1.

Therefore p N
p
q � p p1

p
qp p2

p
q � � � p pt

p
q � 1. Contradiction. [4]
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Problem 3.

(a) An algebraic number field is a field K, such that Q � K � C, and K has finite degree

(or finite dimensional vector space) over Q. [2]

(b) Algebraic integers in K � Qp?dq are given by
 
a� b

?
d | a, b P Z

(
if d � 2 or 3

pmod 4q;
!
a� b � 1�

?
d

2
| a, b P Z

)
if d � 1 pmod 4q. An integral basis for OK is given by

 
1,
?
d
(

if d � 2 or 3 pmod 4q;
!

1, 1�
?
d

2

)
if d � 1 pmod 4q. [3]

(c) We define the discriminant of the n-tuple to be

∆pα1, α2, � � � , αnq � det

�
����

T pα1α1q T pα1α2q � � � T pα1αnq
T pα2α1q T pα2α2q � � � T pα2αnq

...
...

. . .
...

T pαnα1q T pαnα2q � � � T pαnαnq

�
���
.

For any non-zero ideal I in OK , the discriminant of an integral basis for I is called the

discriminant of the ideal I. The discriminant of OK (or the discriminant of an integral

basis for OK) is called the discriminant of the number field K. [3]

(d) Let I � pαq for some non-zero element α P OK . Then NpIq � |Npαq|. [2]

(e) In the ring of integers OK , every ascending chain of ideals I1 � I2 � I3 � � � � stabilises.

In other words, there is a positive integer N such that Im � Im�1 for all m ¥ N . [2]

(f) Theorem of Unique Factorsiation. Let K be a number field and OK its ring of integers.

Then every non-zero proper ideal in OK can be uniquely written as a finite product of

prime ideals up to reordering factors.

Proof of Uniqueness. Suppose P1P2 � � �Pr � I � Q1Q2 � � �Qs where Pi’s and Qj’s are

prime ideals. Then P1 � Q1Q2 � � �Qs. We claim that P1 � Qj for some Qj. If not, then

for each j � 1, 2, � � � , s, we can find aj P QjzP1. Since P1 is a prime ideal, a1a2 � � � as R P1.

However a1a2 � � � as P Q1Q2 � � �Qs � P1. Contradiction.

Therefore, by renumbering the Qj’s if necessary, we can assume that P1 � Q1. Since Q1

is a prime ideal, it is also a maximal ideal, so we conclude that P1 � Q1.

Using cancellation law we obtain P2 � � �Pr � Q2 � � �Qs. Continuing in the same way we

eventually find that r � s and Pi � Qi for all i after renumbering. [4]

(g) By assumption, for each i � 1, 2, � � � , n, we can write αγi �
°n
j�1 aijγj, where each

aij P Q. Using the language of linear algebra, we have α � v �M � v, where

M �

�
����

a11 a12 � � � a1n
a21 a22 � � � a2n
...

...
. . .

...

an1 an2 � � � ann

�
���
, v �

�
����

γ1
γ2
...

γn

�
���
.

Since v � 0, we see that α is an eigenvalue of the square matrix M. In other words, α is

a solution of the equation detpx � I�Mq � 0. Since all entries of M are rational numbers,

the left-hand side of the equation is a polynomial with rational coefficients. Therefore α

is an algebraic number. [4]
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Problem 4.

(a) Two non-zero ideals I, J in OK are said to be equivalent, I � J , if there exist non-zero

α, β P OK , such that pαqI � pβqJ . This is an equivalence relation. Each equivalence class

is called an ideal class. The group of ideal classes in OK under multiplication is called

the ideal class group of K. The order of the ideal class group is called the class number

of K. [4]

(b) We have hK � 1 if and only if OK is a PID. [2]

(c) Let e1, e2 be two linearly independent vectors in R2. The abelian group L � tm1e1 �
m2e2 | m1,m2 P Zu is called a lattice of rank 2 in R2. The fundamental domain of L is

the set T � ta1e1 � a2e2 | a1, a2 P R, 0 ¤ a1   1, 0 ¤ a2   1u. [2]

(d) Minkowski’s Theorem. Let L be a lattice of rank 2 in R2 with fundamental domain

T . Let X be a centrally symmetric convex subset of R2. If volpXq ¡ 4 volpT q, then X

contains a non-zero point of L.

Proof. We first shrink X to half of its size in length; precisely speaking, we consider

Y � tp P R2 | 2p P Xu. Then volpY q � 1
4

volpXq ¡ volpT q.
For every h P L, we define h � T � th � p | p P T u which is the transport of the

fundamental domain along the vector h. It is clear that R2 becomes the disjoint union of

these parallelograms. Let Yh � Y Xph�T q is the part of Y which lies in the parallelogram

h�T for each h P L, then Y becomes the disjoint union of all Yh’s, hence
°
hPL volpYhq �

volpY q ¡ volpT q. We transport each Yh back to the fundamental domain, say Y 1
h � tq P

T | h � q P Yhu. Then
°
hPL volpY 1

hq �
°
hPL volpYhq ¡ volpT q. Since each Y 1

h � T ,

this inequality implies they are not disjoint. Therefore there exist h1, h2 P L, h1 � h2,

such that we can find some q P Y 1
h1
X Y 1

h2
. That implies p1 � h1 � q P Yh1 � Y and

p2 � h2 � q P Yh2 � Y , hence we found p1, p2 P Y , such that p1 � p2 � h1 � h2 P L.

Since p1, p2 P Y , we have 2p1, 2p2 P X. Since X is centrally symmetric, �2p2 P X. Since

X is convex, 1
2
p2p1q � 1

2
p�2p2q P X, which is h1 � h2, a non-zero point in L. [4]

(e) The Minkowski bound MK is 2
π
|∆K |

1
2 if d   0; and 1

2
|∆K |

1
2 if d ¡ 0. [2]

(f) The Minkowski bound is MK � 1
2

?
13   2, hence each ideal class contains an ideal of

norm at most 1, which has to be OK . Therefore the class number of Qp?13q is 1. [2]

(g) By the formula given in class, since d � 1 pmod 4q, we have the factorisation p2q � p2

for some prime ideal p of norm 2. Take I � p, then we have an ideal with NpIq � 2. It

remains to show that I is not principal.

We prove by contradiction. Assume there exists a non-zero α P OK such that I � pαq, then

|Npαq| � NpIq � 2, hence Npαq � �2. Since d � 1 pmod 4q, we can write α � a � b
?
d

for some a, b P Z. Then Npαq � a2�b2d � a2�b2p�dq � �2. Since �d ¡ 0, we must have

a2 � b2p�dq � 2. Since �d ¡ 2, we must have b � 0, otherwise a2 � b2p�dq ¡ 0 � 2 � 2.

It follows that a2 � 2, which has no integer solution. Contradiction.

Since I is not a principal ideal, I and OK are not in the same ideal class. Hence there are

at least two ideal classes. In other words, hK ¥ 2. [4]
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