MA40238 NUMBER THEORY (2014/15 SEMESTER 1) MOCK EXAMINATION SOLUTIONS

Problem 1.

(a) We say a and b are congruent modulo m if m divides $a-b$.
(b) For any positive integer $n, \mu(n)=1$ if $n=1 ; \mu(n)=0$ if n is not square-free; $\mu(n)=(-1)^{l}$ if $n=p_{1} p_{2} \cdots p_{l}$ is the product of l distinct primes.
(c) Let $\operatorname{hcf}(a, m)=d$, then the congruence equation $a x \equiv b(\bmod m)$ has solutions if and only if $d \mid b$.
(d) Consider the congruence $7 x \equiv 2(\bmod 13)$. By adding multiples of 13 on the righthand side we get $7 x \equiv 2 \equiv 28(\bmod 13)$. By cancellation law we get $x \equiv 4(\bmod 13)$. Hence $x=13 k+4$ for any $k \in \mathbb{Z}$. By substitution, we have $7(13 k+4)-13 y=2$, hence $y=7 k+2$. The solutions to the original equation is given by $x=13 k+4, y=7 k+2$ where $k \in \mathbb{Z}$.
(e) Since 11 is an odd prime, \mathbb{Z}_{11}^{*} is a cyclic group of order 10 . To show 2 is a primitive root modulo 11, we need to show 2 has order 10 modulo 11. In other words, its order is not 1,2 or 5 . Indeed, $2^{1} \equiv 2(\bmod 11), 2^{2} \equiv 4(\bmod 11), 2^{5}=32 \equiv 10(\bmod 11)$. None of them is congruent to 1 modulo 29 , hence 2 is a primitive root modulo 11 .
(f) We prove it by induction on k. For $k=1$ there is nothing to prove. For $k=2$, an integer solution to $x \equiv b_{1}\left(\bmod m_{1}\right)$ is of the form $x=m_{1} q+b_{1}$. So we need to have $m_{1} q+b_{1} \equiv b_{2}\left(\bmod m_{2}\right)$, or $m_{1} q \equiv b_{2}-b_{1}\left(\bmod m_{2}\right)$. Since $\operatorname{hcf}\left(m_{1}, m_{2}\right)=1$, it has a unique solution for q, say $q \equiv q_{0}\left(\bmod m_{2}\right)$. Or equivalently, $q=m_{2} r+q_{0}$ for any $r \in \mathbb{Z}$. Hence $x=m_{1} m_{2} r+\left(m_{1} q_{0}+b_{1}\right)$ for any $r \in \mathbb{Z}$, which is the unique solution for x modulo $m=m_{1} m_{2}$.
For general k, suppose we have proved the result for $k-1$. That is, the first $k-1$ congruence equations have a unique common solution $x \equiv s\left(\bmod m^{\prime}\right)$ for some s, where $m^{\prime}=m_{1} m_{2} \cdots m_{k-1}$. Then the problem reduces to a system of two congruences $x \equiv s$ $\left(\bmod m^{\prime}\right)$ and $x \equiv b_{k}\left(\bmod m_{k}\right)$. By the case for $k=2$ above, there is a unique solution for x modulo $m=m^{\prime} m_{k}$. This finishes the induction.
(g) We have $\left(p^{q}+q^{p}\right)-(p+q)=\left(p^{q}-p\right)+\left(q^{p}-q\right)$. By Fermat's Little Theorem, since p and q are distinct primes, $p^{q-1} \equiv 1(\bmod q)$, hence $p^{q-1}-1$ is a multiple of q. Therefore $p^{q}-p=p\left(p^{q-1}-1\right)$ is a multiple of $p q$. By switching p and q we know that $q^{p}-q=q\left(q^{p-1}-1\right)$ is also a multiple of $p q$, so is the sum $\left(p^{q}-p\right)+\left(q^{p}-q\right)$. It follows that $p^{q}+q^{p} \equiv p+q(\bmod p q)$.

Problem 2.

(a) We say a is a quadratic residue modulo m if $x^{2} \equiv a(\bmod m)$ has a solution.
(b) Let $b=p_{1} p_{2} \cdots p_{m}$ be its prime factorisation, where $p_{1}, p_{2}, \cdots, p_{m}$ are not necessarily distinct primes. The Jacobi symbol $\left(\frac{a}{b}\right)$ is defined by $\left(\frac{a}{b}\right)=\left(\frac{a}{p_{1}}\right)\left(\frac{a}{p_{2}}\right) \cdots\left(\frac{a}{p_{m}}\right)$.
(c) Since $\left(\frac{-1}{b}\right)=1$ if $b \equiv 1(\bmod 4)$ and -1 if $b \equiv-1(\bmod 4)$, we get $\left(\frac{-1}{15}\right)=-1$. By definition, $\left(\frac{9}{15}\right)=\left(\frac{9}{3}\right)\left(\frac{9}{5}\right)=0$ because 9 is a multiple of 3 . By quadratic reciprocity for Jacobi symbols, when a and b are coprime positive odd integers, we have $\left(\frac{a}{b}\right)\left(\frac{b}{a}\right)=1$ if $a \equiv 1(\bmod 4)$ or $b \equiv 1(\bmod 4)$, and -1 if $a \equiv b \equiv 3(\bmod 4)$. Since $17 \equiv 1(\bmod 4)$, we have $\left(\frac{17}{15}\right)\left(\frac{15}{17}\right)=1$. Hence only the third expression takes value 1 .
(d) Since $219 \equiv 383 \equiv 3(\bmod 4)$, by quadratic reciprocity for Jacobi symbols, we have $\left(\frac{219}{383}\right)=-\left(\frac{383}{219}\right)=-\left(\frac{164}{219}\right)=-\left(\frac{4}{219}\right)\left(\frac{41}{219}\right)=-\left(\frac{41}{219}\right)$. Since $41 \equiv 1(\bmod 4)$, we have $-\left(\frac{41}{219}\right)=-\left(\frac{219}{41}\right)=-\left(\frac{14}{41}\right)=-\left(\frac{2}{41}\right)\left(\frac{7}{41}\right)=-\left(\frac{7}{41}\right)$, where the last equality is due to $41 \equiv 1$ $(\bmod 8)$. Again by $41 \equiv 1(\bmod 4)$, we get $-\left(\frac{7}{41}\right)=-\left(\frac{41}{7}\right)=-\left(\frac{-1}{7}\right)=-(-1)=1$, where the last equality is due to $7 \equiv 3(\bmod 4)$.
(e) Euler's criterion. For any integer a and odd prime p, we have $\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}}(\bmod p)$. It follows that $\left(\frac{-1}{p}\right)=(-1)^{\frac{p-1}{2}}$. If $p \equiv 1(\bmod 4)$, then $\frac{p-1}{2}$ is an even integer, hence $\left(\frac{-1}{p}\right)=1$; if $p \equiv 3(\bmod 4)$, then $\frac{p-1}{2}$ is an odd integer, hence $\left(\frac{-1}{p}\right)=-1$.
(f) Gauss' Lemma. Let p be an odd prime, $r=\frac{p-1}{2}, p \nmid a$, and μ the number of integers among $a, 2 a, \cdots, r a$ which have negative least residues modulo p. Then $\left(\frac{a}{p}\right)=(-1)^{\mu}$.
Proof. Let m_{l} or $-m_{l}$ be the least residue of $l a$ modulo p, where m_{l} is positive. As l ranges between 1 and r, μ is clearly the number of minus signs that occur in this way. We claim that $m_{l} \neq m_{k}$ for any $l \neq k$ and $1 \leqslant l, k \leqslant r$. For, if $m_{l}=m_{k}$, then $l a \equiv \pm k a$ $(\bmod p)$, and since $p \nmid a$ this implies that $l \pm k \equiv 0(\bmod p)$. The latter congruence is impossible since $l \neq k$ and $|l \pm k| \leqslant|l|+|k| \leqslant p-1$. It follows that the sets $\{1,2, \cdots, r\}$ and $\left\{m_{1}, m_{2}, \cdots, m_{r}\right\}$ coincide. Multiply the congruences

$$
1 \cdot a \equiv \pm m_{1} \quad(\bmod p), \quad 2 \cdot a \equiv \pm m_{2} \quad(\bmod p), \quad \cdots, \quad r \cdot a \equiv \pm m_{r} \quad(\bmod p)
$$

Notice that the number of negative signs on the right hand sides is μ, we obtain

$$
r!\cdot a^{r} \equiv(-1)^{\mu} \cdot r!\quad(\bmod p)
$$

Since $p \nmid r$!, this yields

$$
\begin{equation*}
a^{r} \equiv(-1)^{\mu} \quad(\bmod p) \tag{3}
\end{equation*}
$$

By Euler's criterion $a^{r}=a^{\frac{p-1}{2}} \equiv\left(\frac{a}{p}\right)(\bmod p)$ and the result follows.
(g) We prove by contradiction. Assume there are only finitely many odd primes which are quadratic non-residues modulo p, given by the set $S=\left\{q_{1}, q_{2}, \cdots, q_{s}\right\}$. We consider $N=2 p q_{1} q_{2} \cdots q_{s}-1$. We realise that $N \equiv-1(\bmod p)$, hence $\left(\frac{N}{p}\right)=\left(\frac{-1}{p}\right)=-1$, since $p \equiv 3(\bmod 4)$. Since $N>1$ is odd, we have the factorisation $N=p_{1} p_{2} \cdots p_{t}$ where $p_{1}, p_{2}, \cdots, p_{t}$ are not necessarily distinct odd primes. For each $i=1,2, \cdots, t$, we have $p_{i} \notin S$ and $p_{i} \neq p$, hence p_{i} is a quadratic residue modulo p, which implies $\left(\frac{p_{i}}{p}\right)=1$. Therefore $\left(\frac{N}{p}\right)=\left(\frac{p_{1}}{p}\right)\left(\frac{p_{2}}{p}\right) \cdots\left(\frac{p_{t}}{p}\right)=1$. Contradiction.

Problem 3.

(a) An algebraic number field is a field K, such that $\mathbb{Q} \subseteq K \subseteq \mathbb{C}$, and K has finite degree (or finite dimensional vector space) over \mathbb{Q}.
(b) Algebraic integers in $K=\mathbb{Q}(\sqrt{d})$ are given by $\{a+b \sqrt{d} \mid a, b \in \mathbb{Z}\}$ if $d \equiv 2$ or 3 $(\bmod 4) ;\left\{\left.a+b \cdot \frac{1+\sqrt{d}}{2} \right\rvert\, a, b \in \mathbb{Z}\right\}$ if $d \equiv 1(\bmod 4)$. An integral basis for \mathcal{O}_{K} is given by $\{1, \sqrt{d}\}$ if $d \equiv 2$ or $3(\bmod 4) ;\left\{1, \frac{1+\sqrt{d}}{2}\right\}$ if $d \equiv 1(\bmod 4)$.
(c) We define the discriminant of the n-tuple to be

$$
\Delta\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}\right)=\operatorname{det}\left(\begin{array}{cccc}
T\left(\alpha_{1} \alpha_{1}\right) & T\left(\alpha_{1} \alpha_{2}\right) & \cdots & T\left(\alpha_{1} \alpha_{n}\right) \\
T\left(\alpha_{2} \alpha_{1}\right) & T\left(\alpha_{2} \alpha_{2}\right) & \cdots & T\left(\alpha_{2} \alpha_{n}\right) \\
\vdots & \vdots & \ddots & \vdots \\
T\left(\alpha_{n} \alpha_{1}\right) & T\left(\alpha_{n} \alpha_{2}\right) & \cdots & T\left(\alpha_{n} \alpha_{n}\right)
\end{array}\right) .
$$

For any non-zero ideal I in \mathcal{O}_{K}, the discriminant of an integral basis for I is called the discriminant of the ideal I. The discriminant of \mathcal{O}_{K} (or the discriminant of an integral basis for \mathcal{O}_{K}) is called the discriminant of the number field K.
(d) Let $I=(\alpha)$ for some non-zero element $\alpha \in \mathcal{O}_{K}$. Then $N(I)=|N(\alpha)|$.
(e) In the ring of integers \mathcal{O}_{K}, every ascending chain of ideals $I_{1} \subseteq I_{2} \subseteq I_{3} \subseteq \cdots$ stabilises. In other words, there is a positive integer N such that $I_{m}=I_{m+1}$ for all $m \geqslant N$.
(f) Theorem of Unique Factorsiation. Let K be a number field and \mathcal{O}_{K} its ring of integers. Then every non-zero proper ideal in \mathcal{O}_{K} can be uniquely written as a finite product of prime ideals up to reordering factors.
Proof of Uniqueness. Suppose $P_{1} P_{2} \cdots P_{r}=I=Q_{1} Q_{2} \cdots Q_{s}$ where P_{i} 's and Q_{j} 's are prime ideals. Then $P_{1} \supseteq Q_{1} Q_{2} \cdots Q_{s}$. We claim that $P_{1} \supseteq Q_{j}$ for some Q_{j}. If not, then for each $j=1,2, \cdots, s$, we can find $a_{j} \in Q_{j} \backslash P_{1}$. Since P_{1} is a prime ideal, $a_{1} a_{2} \cdots a_{s} \notin P_{1}$. However $a_{1} a_{2} \cdots a_{s} \in Q_{1} Q_{2} \cdots Q_{s} \subseteq P_{1}$. Contradiction.

Therefore, by renumbering the Q_{j} 's if necessary, we can assume that $P_{1} \supseteq Q_{1}$. Since Q_{1} is a prime ideal, it is also a maximal ideal, so we conclude that $P_{1}=Q_{1}$.
Using cancellation law we obtain $P_{2} \cdots P_{r}=Q_{2} \cdots Q_{s}$. Continuing in the same way we eventually find that $r=s$ and $P_{i}=Q_{i}$ for all i after renumbering.
(g) By assumption, for each $i=1,2, \cdots, n$, we can write $\alpha \gamma_{i}=\sum_{j=1}^{n} a_{i j} \gamma_{j}$, where each $a_{i j} \in \mathbb{Q}$. Using the language of linear algebra, we have $\alpha \cdot \mathbf{v}=\mathbf{M} \cdot \mathbf{v}$, where

$$
\mathbf{M}=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right), \quad \mathbf{v}=\left(\begin{array}{c}
\gamma_{1} \\
\gamma_{2} \\
\vdots \\
\gamma_{n}
\end{array}\right) .
$$

Since $\mathbf{v} \neq 0$, we see that α is an eigenvalue of the square matrix \mathbf{M}. In other words, α is a solution of the equation $\operatorname{det}(x \cdot \mathbf{I}-\mathbf{M})=0$. Since all entries of \mathbf{M} are rational numbers, the left-hand side of the equation is a polynomial with rational coefficients. Therefore α is an algebraic number.

Problem 4.

(a) Two non-zero ideals I, J in \mathcal{O}_{K} are said to be equivalent, $I \sim J$, if there exist non-zero $\alpha, \beta \in \mathcal{O}_{K}$, such that $(\alpha) I=(\beta) J$. This is an equivalence relation. Each equivalence class is called an ideal class. The group of ideal classes in \mathcal{O}_{K} under multiplication is called the ideal class group of K. The order of the ideal class group is called the class number of K.
(b) We have $h_{K}=1$ if and only if \mathcal{O}_{K} is a PID.
(c) Let e_{1}, e_{2} be two linearly independent vectors in \mathbb{R}^{2}. The abelian group $L=\left\{m_{1} e_{1}+\right.$ $\left.m_{2} e_{2} \mid m_{1}, m_{2} \in \mathbb{Z}\right\}$ is called a lattice of rank 2 in \mathbb{R}^{2}. The fundamental domain of L is the set $T=\left\{a_{1} e_{1}+a_{2} e_{2} \mid a_{1}, a_{2} \in \mathbb{R}, 0 \leqslant a_{1}<1,0 \leqslant a_{2}<1\right\}$.
(d) Minkowski's Theorem. Let L be a lattice of rank 2 in \mathbb{R}^{2} with fundamental domain T. Let X be a centrally symmetric convex subset of \mathbb{R}^{2}. If $\operatorname{vol}(X)>4 \operatorname{vol}(T)$, then X contains a non-zero point of L.
Proof. We first shrink X to half of its size in length; precisely speaking, we consider $Y=\left\{p \in \mathbb{R}^{2} \mid 2 p \in X\right\}$. Then $\operatorname{vol}(Y)=\frac{1}{4} \operatorname{vol}(X)>\operatorname{vol}(T)$.

For every $h \in L$, we define $h+T=\{h+p \mid p \in T\}$ which is the transport of the fundamental domain along the vector h. It is clear that \mathbb{R}^{2} becomes the disjoint union of these parallelograms. Let $Y_{h}=Y \cap(h+T)$ is the part of Y which lies in the parallelogram $h+T$ for each $h \in L$, then Y becomes the disjoint union of all Y_{h} 's, hence $\sum_{h \in L} \operatorname{vol}\left(Y_{h}\right)=$ $\operatorname{vol}(Y)>\operatorname{vol}(T)$. We transport each Y_{h} back to the fundamental domain, say $Y_{h}^{\prime}=\{q \in$ $\left.T \mid h+q \in Y_{h}\right\}$. Then $\sum_{h \in L} \operatorname{vol}\left(Y_{h}^{\prime}\right)=\sum_{h \in L} \operatorname{vol}\left(Y_{h}\right)>\operatorname{vol}(T)$. Since each $Y_{h}^{\prime} \subseteq T$, this inequality implies they are not disjoint. Therefore there exist $h_{1}, h_{2} \in L, h_{1} \neq h_{2}$, such that we can find some $q \in Y_{h_{1}}^{\prime} \cap Y_{h_{2}}^{\prime}$. That implies $p_{1}=h_{1}+q \in Y_{h_{1}} \subseteq Y$ and $p_{2}=h_{2}+q \in Y_{h_{2}} \subseteq Y$, hence we found $p_{1}, p_{2} \in Y$, such that $p_{1}-p_{2}=h_{1}-h_{2} \in L$.
Since $p_{1}, p_{2} \in Y$, we have $2 p_{1}, 2 p_{2} \in X$. Since X is centrally symmetric, $-2 p_{2} \in X$. Since X is convex, $\frac{1}{2}\left(2 p_{1}\right)+\frac{1}{2}\left(-2 p_{2}\right) \in X$, which is $h_{1}-h_{2}$, a non-zero point in L.
(e) The Minkowski bound M_{K} is $\frac{2}{\pi}\left|\Delta_{K}\right|^{\frac{1}{2}}$ if $d<0$; and $\frac{1}{2}\left|\Delta_{K}\right|^{\frac{1}{2}}$ if $d>0$.
(f) The Minkowski bound is $M_{K}=\frac{1}{2} \sqrt{13}<2$, hence each ideal class contains an ideal of norm at most 1 , which has to be \mathcal{O}_{K}. Therefore the class number of $\mathbb{Q}(\sqrt{13})$ is 1 .
(g) By the formula given in class, since $d \not \equiv 1(\bmod 4)$, we have the factorisation $(2)=\mathfrak{p}^{2}$ for some prime ideal \mathfrak{p} of norm 2 . Take $I=\mathfrak{p}$, then we have an ideal with $N(I)=2$. It remains to show that I is not principal.
We prove by contradiction. Assume there exists a non-zero $\alpha \in \mathcal{O}_{K}$ such that $I=(\alpha)$, then $|N(\alpha)|=N(I)=2$, hence $N(\alpha)= \pm 2$. Since $d \not \equiv 1(\bmod 4)$, we can write $\alpha=a+b \sqrt{d}$ for some $a, b \in \mathbb{Z}$. Then $N(\alpha)=a^{2}-b^{2} d=a^{2}+b^{2}(-d)= \pm 2$. Since $-d>0$, we must have $a^{2}+b^{2}(-d)=2$. Since $-d>2$, we must have $b=0$, otherwise $a^{2}+b^{2}(-d)>0+2=2$. It follows that $a^{2}=2$, which has no integer solution. Contradiction.
Since I is not a principal ideal, I and \mathcal{O}_{K} are not in the same ideal class. Hence there are at least two ideal classes. In other words, $h_{K} \geqslant 2$.

