
MA40238 NUMBER THEORY 2013/14 SEMESTER 1
HANDOUT ON PRIMITIVE ROOTS

ZIYU ZHANG

1. What you need to know from the lectures

You need to know everything from the lecture on Monday 13/10. This covers everything

from Definition 3.1 to Corollary 3.5 in the lecture notes posted on the webpage.

From the lecture on Tuesday 14/10, you need to know the following (all numberings refer

to the lecture notes posted on the webpage):

 The statement of Proposition 3.8:

For any odd prime p and any integer l ¥ 2, Z�
pl

is cyclic; i.e. there

exist primitive roots modulo pl.

 The statement in Remark 3.9 (which was proved in Proposition 3.8):

For any odd prime p and any integer l ¥ 2, let g P Z and p � g.

Suppose g is a primitive root modulo p and gp�1 � 1 pmod p2q, then

g is a primitive root modulo pl.

This provides a convenient way for finding primitive roots modulo high powers of

odd primes.

 The statement of Proposition 3.6:

For any positive integer l, Z�
2l

is not cyclic unless l � 1, 2.

 The statement of Theorem 3.10 (which I will explain on Friday 17/10):

For any integer m ¥ 2, Z�m is cyclic (in other words, there exist

primitive roots modulo m) iff m � 2, 4, pl or 2pl, where p is any odd

prime and l is any positive integer.

You should be able to use this theorem to rule out the numbers which do not

possess primitive roots.
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2. Hints to Exercise 3.1

Here is an example which shows how you might want to approach such a problem.

Suppose we want to find a primitive root modulo 17. Then we are looking for some a P Z,

hcfpa, 17q � 1, such that a is a generator of Z�17. In other words, a has order φp17q � 16

in Z�17. If we just pick an arbitrary a, a might not have order 16. Instead, its order could

be any other positive divisor d of 16, namely, 1, 2, 4 or 8. We want to rule out these

situations. In other words, we want to find some a P Z, hcfpa, 17q � 1, satisfying the

requirement ad � 1 pmod 17q for d � 1, 2, 4 or 8.

The main idea to find such an a is test and error. We try small values of a coprime to

17 one by one until we find a right one. a � 1 is not worth trying since 11 � 1 pmod 17q

which violates our requirement for a. Now we try a � 2. 21 � 2 pmod 17q, good. 22 � 4

pmod 17q, good. 24 � 16 � �1 pmod 17q, good. 28 � p�1q2 � 1 pmod 17q, which violates

our requirement for a. We are sad because 2 is not a primitive root, so we have to start

over and try a � 3. This time, 31 � 3 pmod 17q, 32 � 9 pmod 17q, 34 � 92 � 13 � �4

pmod 17q, 38 � p�4q2 � �1 pmod 17q. We are now happy because the order of 3 modulo

17 is not among 1, 2, 4 and 8. So its order must be 16 (because its order has to be a

positive divisor of 16). We conclude a � 3 is a primitive root modulo 17.

Suppose we want to go one step further and find all primitive roots modulo 17. We use

Remark 3.2 (3) from lecture. We know 3 is a generator of Z�17, hence all generators of

Z�17 are given by 3
k
, where 0 ¤ k   16, hcfpk, 16q � 1; i.e., k � 1, 3, 5, 7, 9, 11, 13, 15.

We can compute them explicitly one by one. 31 � 3 pmod 17q, 33 � 27 � 10 pmod 17q,

35 � 3332 � 10 � 9 � 5 pmod 17q, etc. In Exercise 3.1 you have much smaller numbers to

work with, so the computation should not be too complicated. In this example, we can

continue the calculation to get 37 � 11 pmod 17q, 39 � 14 pmod 17q, 311 � 7 pmod 17q,

313 � 12 pmod 17q, 315 � 6 pmod 17q. Conclusion: a P Z is a primitive root modulo 17

iff a is congruent to any of the following numbers modulo 17: 3, 10, 5, 11, 14, 7, 12 or 6.

Suppose we want to go one step further in another direction and find a primitive root for

175. We need to use Remark 3.9. That is, we need to find some a P Z which is a primitive

root modulo 17 and a16 � 1 pmod 172q. We already know 3 is a primitive root modulo

17. It remains to check whether 316 � 1 pmod 172q holds. We have quite large numbers

here, but in Exercise 3.1 you get numbers which are much more manageable. In this

example we need the following calculation: 172 � 289; 34 � 81; 38 � 812 � 6561 � 203

pmod 289q; 316 � 2032 � 41209 � 171 � 1 pmod 289q. Conclusion: 3 is a primitive root

modulo 175. Indeed, 3 is a primitive root modulo 17l for every l ¥ 2 by Remark 3.9.

Finally, suppose we are asked to find any primitive root modulo 170 instead of 17. We need

to check if 170 has one of the forms in the list in Theorem 3.10. The prime factorisation

of 170 is 170 � 2�5�17, which has two distinct odd prime factors, thus is not in the list.

It follows that there is no primitive root modulo 170. In other words, Z�170 is not cyclic.
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3. Hints to Exercises 3.2 and 3.3

These two problems are simple yet important applications of primitive roots. Here are

some hints, but you need to supply more details when writing down your own proofs.

Exercise 3.2:

For part (1), for any a P Z coprime to p, “a has order d modulo p” means “a has order d

in Z�p”. Equivalently, ad � 1 pmod pq and ak � 1 pmod pq for any 1 ¤ k ¤ d� 1. In this

part of the problem we need to check these two conditions for a � g
p�1
d , both of which

rely on the assumption that g is a primitive root modulo p (or equivalently, g has order

p� 1 modulo p).

Part (2) uses part (1). It is helpful to realise that a2 � 1 pmod pq is equivalent to

p � pa2 � 1q � pa� 1qpa� 1q.

For part (3), assume g is a primitive root modulo 29, then g28 � 1 pmod 29q. We can

use this to prove that x � g4k pmod 29q are always solutions. We can actually restrict

ourselves to the values k � 0, 1, 2, 3, 4, 5, 6, because g4k does not give new congruence class

for any other k P Z. To prove there are no other solutions, you just need to realise that

Z29 is a field. An equation of degree 7 can have at most 7 solutions in this field by Lemma

3.3 (or equivalently, at most 7 congruence classes modulo 29). If you have already found

7 solutions (as above), you should have found all.

Exercise 3.3:

For part (1), the “if” part is a simple observation. For the “only if” part, you need to

realise that any solution x must be coprime to p, hence is in the congruence class of gk

for some k P Z.

Part (2) is extremely important because we will need to use this result next week. Using

part (1), you only need to show that a � gdk pmod pq iff a
p�1
d � 1 pmod pq. This time

the “only if” part is straightforward. For the “if” part, you need to realise that a is in the

congruence class of gl for some l P Z. And you just need to show l is a multiple of d.

For part (3), you need to use part (1) and the primitive root found in Exercise 3.1 (1).

By allowing k to take various values you can get all values for a.

If you do everything correctly, then the values you found in parts (3) of these two exercises

should agree. This is not a coincidence. Enthusiasts can try to figure out what the magic

pattern is.
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4. Hints to Exercise 3.4

There is, unfortunately, a typo in this problem. In the second line of part (3), gl should

be corrected to pl. This exercise is a little more challenging. Some similar techniques were

used in the proof of Proposition 3.8, but you can still do this exercise without reading

that proof. Here are some hints, but you need to supply more details when writing down

your own proofs.

For part (1), a hint is already given to you. If you take p-th powers on both sides of

the equation in the hint and expand the right-hand side using binomial expansion, then

you can see that every term on the right-hand side, except bp, is divisible by pl�1, which

proves the statement.

For part (2), you can assume the order of g modulo pm is d. The goal is to show d � φppmq.

It suffices to prove that d � φppmq and φppmq � d. For the first division, notice that Z�pm
has order φppmq, hence the order d of any element g is a positive divisor of φppmq. For

the second division, you need to apply part (1) on the congruence gd � 1 pmod pmq

repeatedly, more precisely, n �m times. Then you will reach the congruence gdp
n�m

� 1

pmod pnq. Since g has order φppnq modulo pn (because g is a primitive root modulo pn),

we must have φppnq � dpn�m. Using the formula for φ-function we can get the second

division.

For part (3), the sufficiency is stated in Remark 3.9. For the necessity, you need to use

part (2). More precisely, if g is a primitive root modulo pl for some l ¥ 2, then g is a

primitive root modulo p and p2, which give the two conditions in the statement.

Don’t you think it’s fun to play with the congruences? :-)
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