
Solutions to Exercise Sheet 1

We provide at least one solution to each problem. Other approaches are also possible for

some problems.

Solution 1.1. Review of highest common factors.

(1) Using Euclidean algorithm, we have

963 � 657� 1� 306;

657 � 306� 2� 45;

306 � 45� 6� 36;

45 � 36� 1� 9;

36 � 9� 4� 0.

Hence we know hcfp963, 657q � 9 which is the last non-zero remainder. Then we

go backwards to find a linear combination which gives 1.

9 � 45� 36

� 45� p306� 45q
� 45� 7� 306

� p657� 306q � 306

� 657� 7� 306� 15

� 657� 7� p963� 657q � 15

� 657� 22� 963� 15.

So m � �15 and n � 22 is one solution.

(2) Since d � hcfpa, bq, there exist some m,n P Z, such that d � am � bn. (For

example, the Euclidean algorithm can always give such a pair of pm,nq.) By

substituting, we get d � da1m� db1n, hence 1 � a1m� b1n. If hcfpa1, b1q � k, then

k � a1 and k � b1, thus k � a1m� b1n � 1, which implies hcfpa1, b1q � 1.

Solution 1.2. Examples of arithmetic functions.
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(1) We factor 360 � 23� 32� 51. By the formulas in Proposition 1.19, Definition 1.20

and Proposition 1.29, we have

νp360q � p3� 1qp2� 1qp1� 1q � 24;

σp360q � 24 � 1

2� 1
� 33 � 1

3� 1
� 52 � 1

5� 1
� 15� 13� 6 � 1170;

µp360q � 0 since 360 is not square-free;

φp360q � 360� p1� 1

2
qp1� 1

3
qp1� 1

5
q � 96.

Similarly we have 429 � 3� 11� 13. Therefore

νp429q � p1� 1qp1� 1qp1� 1q � 8;

σp429q � 32 � 1

3� 1
� 112 � 1

11� 1
� 132 � 1

13� 1
� 4� 12� 14 � 672;

µp429q � p�1q3 � �1 since 429 is square-free;

φp429q � 429� p1� 1

3
qp1� 1

11
qp1� 1

13
q � 240.

(2) There are two different proofs. We show one of them here. The other proof will

be given together with part (3). We consider two separate cases: if n has any odd

prime factor p, then by Remark 1.30, φpnq has a factor p � 1 hence is even; if n

has no odd prime factor, then we can write n � 2a for some a ¥ 2, which implies

φpnq � 2a�1 by the same formula hence is even.

(3) Let S � tm P Z | 1 ¤ m ¤ n, hcfpm,nq � 1u. When n � 2, the only element in

S is 1, hence it is clear that the statement holds. From now on we assume n ¥ 3.

For every integer k with k ¤ n
2
, we consider the pair of integers tk, n� ku.

Let m � hcfpk, nq and m1 � hcfpn � k, nq. Then m � k and m � n, hence

m � n � k, which implies m � m1. A similar argument shows m1 � m. Therefore

m � m1, which implies either k and n� k are both in S, or neither is in S.

The two integers k and n� k in a pair are distinct unless k � n
2
, which happens

when n is even. However in such a case n
2
R S because hcfpn, n

2
q � n

2
¡ 1. We

conclude that S can be divided into pairs of distinct integers of the form tk, n�ku,
which proves the number of elements in S, i.e. φpnq, is even. Moreover the sum of

the two integers in a pair is n, and there are precisely φpnq
2

pairs in S (since there

are φpnq elements in S). This implies the sum of all elements in S is n � φpnq
2

, as

required.

Solution 1.3. Applications of Möbius inversion.
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By Example 1.18, for every n P Z�, we can write

νpnq �
¸
d�n

1;

σpnq �
¸
d�n

d.

Therefore we apply Theorem 1.26 for fpnq � 1 and F pnq � νpnq to obtain

1 �
¸
d�n

µpdqν
�n
d

	
�

¸
d�n

µ
�n
d

	
νpdq

which is the first statement. For fpnq � n and F pnq � σpnq we obtain

n �
¸
d�n

µpdqσ
�n
d

	
�

¸
d�n

µ
�n
d

	
σpdq

which is the second statement.

Solution 1.4. Unique factorisation in the ring of Gaussian integers.

(1) The formula is in fact true for any complex numbers. For any α P C, we have

νpαq � αα. Hence for any α, β P C, we have

νpαβq � αβ � αβ � αα � ββ � νpαqνpβq.
(2) The commutative ring Zris does not have zero divisors because it is a subring of

C in which there is no zero divisor. Now we check that ν is a Euclidean valuation.

Let α � a� bi and β � c� di � 0. We can divide α by β as complex numbers

and write α
β
� r � si where r, s are real numbers. Choose integers m,n such that

|r�m| ¤ 1
2

and |s�n| ¤ 1
2

(the choice may not be unique). Set γ � m�ni, then

γ P Zris and νpα
β
� γq � pr �mq2 � ps � nq2 ¤ 1

4
� 1

4
� 1

2
. Set δ � α � βγ, then

δ P Zris and either δ � 0 or νpδq � νpβpα
β
� γqq � νpβqνpα

β
� γq ¤ 1

2
νpβq   νpβq.

Hence ν defines a Euclidean valuation on Zris, and Zris is a Euclidean domain.

(3) By Theorem 1.5 and Theorem 1.11, we know that a Euclidean domain is a UFD.

Hence by part (2) we conclude that Zris is a UFD.

(4) Assume α is a unit, then there exists β P Zris, such that ab � 1. We apply the

Euclidean valuation ν on both sides and use part (1) to get νpαqνpβq � νp1q � 1.

Since both νpαq and νpβq are non-negative integer, the only possibility is νpαq �
νpβq � 1.

On the other hand, assume νpαq � 1. Let α � a � bi, then a2 � b2 � 1. This

implies pa � biqpa � biq � 1. Since a � bi P Zris, we conclude that α divides 1,

hence α is a unit.

To find all the units, we need to find all pairs of integers a, b such that a2�b2 � 1.

This is only possible when a � �1 and b � 0, or a � 0 and b � �1. In other

words, α � �1 or �i.
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(5) We prove by contradiction. Assume α is not irreducible. Then we can write

α � α1α2 where neither factor is zero or a unit. By part (4) we know νpα1q and

νpα2q are both positive integers larger than 1. Therefore by part (1) we know

νpαq � νpα1qνpα2q is composite, not a prime. Contradiction.

(6) We first show they are both irreducible factorisations of 5. We only need to check

all factors are irreducible. This is true by part (5) because νp2� iq � νp1�2iq � 5

is a prime integer.

We explain why this is consistent with unique factorisation. By Definition 1.10,

unique factorisation means the number of irreducible factors agrees in two fac-

torisations, and the corresponding factors are associated after reordering. In this

example we have two irreducible factors in either factorisation. We can reorder

the factors as p2� iqp2� iq � 5 � p1�2iqp1�2iq. Notice that 2� i � i � p1�2iq and

i is a unit in Zris, so 2� i and 1�2i are associated. Similarly 2� i � p�iq � p1�2iq
implies that 2� i and 1� 2i are also associated.
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