SOLUTIONS TO EXERCISE SHEET 2

Solution 2.1. Solving linear equations.

(1)

(3)

We use the Euclidean algorithm to compute hef(140, 84) and decide if the equation
has a solution.

140 = 84 x 1 + 56;
84 =56 x 1 4 28;
56 =28 x 2+ 0.

Hence hcf(140,84) = 28, which does not divide 98. By Proposition 2.5, the equa-
tion has no solution.

By Euclidean algorithm, we can find hef (28, 116).
116 = 28 x 4 + 4:
28=4x7+0.

Hence hef(28,116) = 4, which divides 124. So the equation has 4 solutions modulo
116. We can solve it first by cancelling 4 to get 7z = 31 (mod 29), which reduces
to 7x =2 (mod 29). Now we use Euclidean algorithm for the pair 7 and 29.

29 =7 x4+1;
7T=1x7+0.

So we simply have 1 =29 — 7 x 4 hence 7 x (—4) = 1 (mod 29). Multiply both
sides by 2 to get 7 x (—8) = 2 (mod 29). Since we usually prefer to use positive
numbers as representatives of congruence classes, we add 29 to —8 to get 21. Hence
r = 21 (mod 29). To get solutions modulo 116, we keep adding 29 to 21 until
we get repeated congruence classes. So we have xz = 21,50, 79 or 108 (mod 116),
which are all solutions to the original equation.

We write it as a congruence equation 12z = 17 (mod 7). Since hef(12,7) = 1, we
should have a unique solution to it. To solve the equation we can add multiples of 7
to 17 until we can cancel the coefficient 12. Hence we have 122 = 24 (mod 7), then
r =2 (mod 7). We write z = Tk+2 for an arbitrary k € Z, then substitute z in the
original equation to get 12(7k+2)+7y = 17. Therefore we have Ty = —84k—7 thus
y = —12k — 1. The solutions to the original equation is x = 7k + 2,y = =12k — 1
for an arbitrary k € Z.

For simplicity we write d = hef(a,b). For one direction, assume that ax + by = ¢
has a solution x = xy and y = yo. Then axy + byy = ¢. Since d | a and d | b,
we know d | (ax + by), which gives d | ¢. For the other direction, assume d | c,

then we can write ¢ = dc¢’ for some integer ¢’. Since d = hcf(a,b), we can find
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integers x;, and vy, such that azj + by} = d (for example, by Euclidean algorithm).
Multiply both sides by ¢/, then we get az(c’ + byjc’ = dc’ = c¢. Therefore x = z(c
and y =y, is a solution.

Solution 2.2. Solving systems of linear equations.

(1)

We find a common solution to the first two equations. From the first equation we
can write x = 7q + 1. Substituting x in the second equation to get 7¢ + 1 = 4
(mod 9), hence 7¢ = 3 (mod 9). Adding 18 to 3 and we get 7¢ = 21 (mod 9),
hence ¢ =3 (mod 9). Write ¢ = 97 +3 to get © = 7(9r +3) + 1 = 63r +22. So the
solution to the first two equations is x = 22 (mod 63). Now we bring the third
equation into the question. By substitution we get 63r + 22 = —2 (mod 5), hence
63r = —24 (mod 5). We reduce it to 3r = 1 (mod 5), hence 3r = 6 (mod 5),
which gives 7 = 2 (mod 5). Write r = 5s+2 to get x = 63(5s5+2)+22 = 3155+148.
So the solution to the original system is x = 148 (mod 315).

Since hef(4,13) = 1 divides 6 and hcf(6,8) = 2 divides 4, both equations have so-
lutions. From 4z = 6 (mod 13) we get 4o = 32 (mod 13) hence z =8 (mod 13).
Write x = 13¢ + 8 and substitute z in the second equation to get 6(13¢q + 8) = 4
(mod 8). We write it as 78¢ = —44 (mod 8) and reduce it to 6¢ = 4 (mod 8).
By cancelling 2 we get 3¢ = 2 (mod 4). By adding 4 to 2 we get 3¢ = 6 (mod 4)
hence ¢ =2 (mod 4). We write ¢ = 4r + 2, then x = 13(4r + 2) + 8 = 52r + 34.
So the solution is x = 34 (mod 52).

Remark: you might ask if the result is consistent with the Chinese remainder
theorem because the modulus is not 13 x 8 = 104. In fact, the solution to the first
equation is = 8 (mod 13). And the second equation has two solutions z = 2
(mod 8) and x =6 (mod 8). By the Chinese remainder theorem, they combine to
give two solutions to the original system, which are z = 34 (mod 104) and = = 86
(mod 104). They can be represented by a single congruence x = 34 (mod 52).
From the first equation we can write x = 15¢ + 7. We substitute x in the second
equation to get 15¢+7 =5 (mod 9). That is 15¢ = —2 (mod 9), which reduces to
6g =7 (mod 9). Notice that hef(6,9) = 3 which does not divide 7. By Proposition
2.5, this equation has no solution. Hence so is the original system.

Solution 2.3. Cancellation law for congruences.

(1)

Since k | m, we can write m = km’ for some integer m’. For one direction, assume
ka = kb (mod m). Then there exists some ¢ € Z such that ka — kb = em. We
divide both sides by k to get a — b = c¢m/, which implies a = b (mod m/'), as

required.
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For the other direction, assume a = b (mod m’). Then there exists some c € Z
such that a — b = em/. We multiply both sides by k to get ka — kb = ckm’ = c¢m,
which implies ka = kb (mod m).

Since ka = kb (mod m), we know m | (ka — kb) = k(a — b). Since hef(k,m) = 1,
we claim that we have m | (a —b). Indeed, using the condition hef(k, m) = 1, we
can find some «, § € Z, such that ka + mf = 1. Multiply both sides by a — b to
get k(a — b)a+ m(a —b)f = a —b. Since m divides both terms on the left-hand
side, we conclude that m divides the right-hand side; i.e. m | (a — b). It follows
that a = b (mod m).

For the other direction, assume a = b (mod m). Then we know m | (a — b),
hence m | k(a — b) = ka — kb. 1t follows that ka = kb (mod m).

Since hef(k,m) = d, we can write k = dk’ and m = dm’. By Exercise 1.1 (2), we
know hef (&', m’) = 1. The condition ka = kb (mod m) is equivalent to dk’a = dk'b
(mod dm’), which is equivalent to k'a = k'b (mod m’) by part (1), which is further
equivalent to a = b (mod m’) by part (2). This proves the equivalence required in
question.

Solution 2.4. Wilson’s theorem and beyond.

(1)

(2)

We write S = {1,2,--- ,p—1}. For any k € S, p } k hence hcf(k,p) = 1, which
implies kz = 1 (mod p) has a unique solution modulo p by Proposition 2.5. Since
the congruence class 0 is not the solution, this solution must be a congruence class
b for some b not divisible by p. This congruence contains exactly one element in
the set S, which we call b,. Therefore this by is the unique solution in S to the
equation kz =1 (mod p).

When k = 1, it is clear that by, = 1 does satisfy the equation kb, = 1 (mod p).
When k£ = p —1, it is also clear that b, = p — 1 satisfy the same equation because
kb= (p— D)(p—1) = (~1)(~1) = 1 (mod p).

It remains to show that these are the only values of £ which make k = b.
In other words, if k¥ = 1 (mod p) is satisfied by some k € S, we want to show
that k = 1 or K = p — 1. Indeed, the equation k* = 1 (mod p) is equivalent to
p | (k*—=1) = (k+1)(k — 1), which implies that either p | k+1orp | k—1
because p is a prime. If p | k+ 1, then £ = —1 (mod p), so the only value in S is
k=p—1.1Ifp| k—1, then k=1 (mod p), so the only value in S is k = 1. This
shows that the only values for k£ which make k = by are k =1 and k =p — 1.

By parts (1) and (2), the set S\{1,p — 1} can be divided into pairs, such that the

product of the two elements in each pair is congruent to 1 modulo p. Hence the

product of all elements in S\{1,p — 1} is congruent to 1 modulo p. Taking the
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remaining two elements 1 and p — 1 into consideration, the product of all elements
in S is congruent to p — 1 modulo p, or equivalently, —1 modulo p.

(4) Assume n is composite and n # 4, then we can write n = ab for some a,b € Z,
1 < a,b < n. There are two cases. If a # b, then a and b appear as distinct
factors in (n — 1)!. Hence (n — 1)! is a multiple of ab. In other words, (n —1)I =0
(mod n). If a = b, then the assumption implies a = b > 3, hence 2a < ab = n.
Now a and 2a appear as distinct factors in (n — 1)!. Hence (n — 1)! is a multiple
of a-2a = 2ab = 2n, which implies (n — 1)! = 0 (mod n). When n = 4, we have
(4-1)!=3'=6=2 (mod 4).

(5) The “if” part is proved in part (3) for odd primes, and is clear for n = 2. The
contrapositive of the “only if” part is proved in part (4). Therefore the condition
(n— 1) = —1 (mod n) is equivalent to n being a prime.
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