
Solutions to Exercise Sheet 2

Solution 2.1. Solving linear equations.

(1) We use the Euclidean algorithm to compute hcfp140, 84q and decide if the equation

has a solution.

140 � 84� 1� 56;

84 � 56� 1� 28;

56 � 28� 2� 0.

Hence hcfp140, 84q � 28, which does not divide 98. By Proposition 2.5, the equa-

tion has no solution.

(2) By Euclidean algorithm, we can find hcfp28, 116q.
116 � 28� 4� 4;

28 � 4� 7� 0.

Hence hcfp28, 116q � 4, which divides 124. So the equation has 4 solutions modulo

116. We can solve it first by cancelling 4 to get 7x � 31 pmod 29q, which reduces

to 7x � 2 pmod 29q. Now we use Euclidean algorithm for the pair 7 and 29.

29 � 7� 4� 1;

7 � 1� 7� 0.

So we simply have 1 � 29 � 7 � 4 hence 7 � p�4q � 1 pmod 29q. Multiply both

sides by 2 to get 7 � p�8q � 2 pmod 29q. Since we usually prefer to use positive

numbers as representatives of congruence classes, we add 29 to �8 to get 21. Hence

x � 21 pmod 29q. To get solutions modulo 116, we keep adding 29 to 21 until

we get repeated congruence classes. So we have x � 21, 50, 79 or 108 pmod 116q,
which are all solutions to the original equation.

(3) We write it as a congruence equation 12x � 17 pmod 7q. Since hcfp12, 7q � 1, we

should have a unique solution to it. To solve the equation we can add multiples of 7

to 17 until we can cancel the coefficient 12. Hence we have 12x � 24 pmod 7q, then

x � 2 pmod 7q. We write x � 7k�2 for an arbitrary k P Z, then substitute x in the

original equation to get 12p7k�2q�7y � 17. Therefore we have 7y � �84k�7 thus

y � �12k � 1. The solutions to the original equation is x � 7k � 2, y � �12k � 1

for an arbitrary k P Z.

(4) For simplicity we write d � hcfpa, bq. For one direction, assume that ax � by � c

has a solution x � x0 and y � y0. Then ax0 � by0 � c. Since d � a and d � b,
we know d � pax � byq, which gives d � c. For the other direction, assume d � c,
then we can write c � dc1 for some integer c1. Since d � hcfpa, bq, we can find
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integers x10 and y10, such that ax10� by10 � d (for example, by Euclidean algorithm).

Multiply both sides by c1, then we get ax10c
1 � by10c

1 � dc1 � c. Therefore x � x10c
1

and y � y10c
1 is a solution.

Solution 2.2. Solving systems of linear equations.

(1) We find a common solution to the first two equations. From the first equation we

can write x � 7q � 1. Substituting x in the second equation to get 7q � 1 � 4

pmod 9q, hence 7q � 3 pmod 9q. Adding 18 to 3 and we get 7q � 21 pmod 9q,
hence q � 3 pmod 9q. Write q � 9r�3 to get x � 7p9r�3q�1 � 63r�22. So the

solution to the first two equations is x � 22 pmod 63q. Now we bring the third

equation into the question. By substitution we get 63r� 22 � �2 pmod 5q, hence

63r � �24 pmod 5q. We reduce it to 3r � 1 pmod 5q, hence 3r � 6 pmod 5q,
which gives r � 2 pmod 5q. Write r � 5s�2 to get x � 63p5s�2q�22 � 315s�148.

So the solution to the original system is x � 148 pmod 315q.
(2) Since hcfp4, 13q � 1 divides 6 and hcfp6, 8q � 2 divides 4, both equations have so-

lutions. From 4x � 6 pmod 13q we get 4x � 32 pmod 13q hence x � 8 pmod 13q.
Write x � 13q � 8 and substitute x in the second equation to get 6p13q � 8q � 4

pmod 8q. We write it as 78q � �44 pmod 8q and reduce it to 6q � 4 pmod 8q.
By cancelling 2 we get 3q � 2 pmod 4q. By adding 4 to 2 we get 3q � 6 pmod 4q
hence q � 2 pmod 4q. We write q � 4r � 2, then x � 13p4r � 2q � 8 � 52r � 34.

So the solution is x � 34 pmod 52q.
Remark : you might ask if the result is consistent with the Chinese remainder

theorem because the modulus is not 13� 8 � 104. In fact, the solution to the first

equation is x � 8 pmod 13q. And the second equation has two solutions x � 2

pmod 8q and x � 6 pmod 8q. By the Chinese remainder theorem, they combine to

give two solutions to the original system, which are x � 34 pmod 104q and x � 86

pmod 104q. They can be represented by a single congruence x � 34 pmod 52q.
(3) From the first equation we can write x � 15q � 7. We substitute x in the second

equation to get 15q�7 � 5 pmod 9q. That is 15q � �2 pmod 9q, which reduces to

6q � 7 pmod 9q. Notice that hcfp6, 9q � 3 which does not divide 7. By Proposition

2.5, this equation has no solution. Hence so is the original system.

Solution 2.3. Cancellation law for congruences.

(1) Since k � m, we can write m � km1 for some integer m1. For one direction, assume

ka � kb pmod mq. Then there exists some c P Z such that ka � kb � cm. We

divide both sides by k to get a � b � cm1, which implies a � b pmod m1q, as

required.
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For the other direction, assume a � b pmod m1q. Then there exists some c P Z
such that a� b � cm1. We multiply both sides by k to get ka� kb � ckm1 � cm,

which implies ka � kb pmod mq.
(2) Since ka � kb pmod mq, we know m � pka� kbq � kpa� bq. Since hcfpk,mq � 1,

we claim that we have m � pa� bq. Indeed, using the condition hcfpk,mq � 1, we

can find some α, β P Z, such that kα �mβ � 1. Multiply both sides by a � b to

get kpa � bqα �mpa � bqβ � a � b. Since m divides both terms on the left-hand

side, we conclude that m divides the right-hand side; i.e. m � pa � bq. It follows

that a � b pmod mq.
For the other direction, assume a � b pmod mq. Then we know m � pa � bq,

hence m � kpa� bq � ka� kb. It follows that ka � kb pmod mq.
(3) Since hcfpk,mq � d, we can write k � dk1 and m � dm1. By Exercise 1.1 (2), we

know hcfpk1,m1q � 1. The condition ka � kb pmod mq is equivalent to dk1a � dk1b

pmod dm1q, which is equivalent to k1a � k1b pmod m1q by part (1), which is further

equivalent to a � b pmod m1q by part (2). This proves the equivalence required in

question.

Solution 2.4. Wilson’s theorem and beyond.

(1) We write S � t1, 2, � � � , p� 1u. For any k P S, p � k hence hcfpk, pq � 1, which

implies kx � 1 pmod pq has a unique solution modulo p by Proposition 2.5. Since

the congruence class 0 is not the solution, this solution must be a congruence class

b for some b not divisible by p. This congruence contains exactly one element in

the set S, which we call bk. Therefore this bk is the unique solution in S to the

equation kx � 1 pmod pq.
(2) When k � 1, it is clear that bk � 1 does satisfy the equation kbk � 1 pmod pq.

When k � p� 1, it is also clear that bk � p� 1 satisfy the same equation because

kbk � pp� 1qpp� 1q � p�1qp�1q � 1 pmod pq.
It remains to show that these are the only values of k which make k � bk.

In other words, if k2 � 1 pmod pq is satisfied by some k P S, we want to show

that k � 1 or k � p � 1. Indeed, the equation k2 � 1 pmod pq is equivalent to

p � pk2 � 1q � pk � 1qpk � 1q, which implies that either p � k � 1 or p � k � 1

because p is a prime. If p � k � 1, then k � �1 pmod pq, so the only value in S is

k � p� 1. If p � k � 1, then k � 1 pmod pq, so the only value in S is k � 1. This

shows that the only values for k which make k � bk are k � 1 and k � p� 1.

(3) By parts (1) and (2), the set Szt1, p� 1u can be divided into pairs, such that the

product of the two elements in each pair is congruent to 1 modulo p. Hence the

product of all elements in Szt1, p � 1u is congruent to 1 modulo p. Taking the
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remaining two elements 1 and p�1 into consideration, the product of all elements

in S is congruent to p� 1 modulo p, or equivalently, �1 modulo p.

(4) Assume n is composite and n � 4, then we can write n � ab for some a, b P Z,

1   a, b   n. There are two cases. If a � b, then a and b appear as distinct

factors in pn� 1q!. Hence pn� 1q! is a multiple of ab. In other words, pn� 1q! � 0

pmod nq. If a � b, then the assumption implies a � b ¥ 3, hence 2a   ab � n.

Now a and 2a appear as distinct factors in pn � 1q!. Hence pn � 1q! is a multiple

of a � 2a � 2ab � 2n, which implies pn � 1q! � 0 pmod nq. When n � 4, we have

p4� 1q! � 3! � 6 � 2 pmod 4q.
(5) The “if” part is proved in part (3) for odd primes, and is clear for n � 2. The

contrapositive of the “only if” part is proved in part (4). Therefore the condition

pn� 1q! � �1 pmod nq is equivalent to n being a prime.
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