Solutions to Exercise Sheet 2

Solution 2.1. Solving linear equations.
(1) We use the Euclidean algorithm to compute $\operatorname{hcf}(140,84)$ and decide if the equation has a solution.

$$
\begin{aligned}
140 & =84 \times 1+56 ; \\
84 & =56 \times 1+28 ; \\
56 & =28 \times 2+0 .
\end{aligned}
$$

Hence $\operatorname{hcf}(140,84)=28$, which does not divide 98. By Proposition 2.5 , the equation has no solution.
(2) By Euclidean algorithm, we can find $\operatorname{hcf}(28,116)$.

$$
\begin{aligned}
116 & =28 \times 4+4 \\
28 & =4 \times 7+0
\end{aligned}
$$

Hence $\operatorname{hcf}(28,116)=4$, which divides 124 . So the equation has 4 solutions modulo 116. We can solve it first by cancelling 4 to get $7 x \equiv 31(\bmod 29)$, which reduces to $7 x \equiv 2(\bmod 29)$. Now we use Euclidean algorithm for the pair 7 and 29.

$$
\begin{aligned}
29 & =7 \times 4+1 \\
7 & =1 \times 7+0
\end{aligned}
$$

So we simply have $1=29-7 \times 4$ hence $7 \times(-4) \equiv 1(\bmod 29)$. Multiply both sides by 2 to get $7 \times(-8) \equiv 2(\bmod 29)$. Since we usually prefer to use positive numbers as representatives of congruence classes, we add 29 to -8 to get 21. Hence $x \equiv 21(\bmod 29)$. To get solutions modulo 116, we keep adding 29 to 21 until we get repeated congruence classes. So we have $x \equiv 21,50,79$ or $108(\bmod 116)$, which are all solutions to the original equation.
(3) We write it as a congruence equation $12 x \equiv 17(\bmod 7)$. Since $\operatorname{hcf}(12,7)=1$, we should have a unique solution to it. To solve the equation we can add multiples of 7 to 17 until we can cancel the coefficient 12 . Hence we have $12 x \equiv 24(\bmod 7)$, then $x \equiv 2(\bmod 7)$. We write $x=7 k+2$ for an arbitrary $k \in \mathbb{Z}$, then substitute x in the original equation to get $12(7 k+2)+7 y=17$. Therefore we have $7 y=-84 k-7$ thus $y=-12 k-1$. The solutions to the original equation is $x=7 k+2, y=-12 k-1$ for an arbitrary $k \in \mathbb{Z}$.
(4) For simplicity we write $d=\operatorname{hcf}(a, b)$. For one direction, assume that $a x+b y=c$ has a solution $x=x_{0}$ and $y=y_{0}$. Then $a x_{0}+b y_{0}=c$. Since $d \mid a$ and $d \mid b$, we know $d \mid(a x+b y)$, which gives $d \mid c$. For the other direction, assume $d \mid c$, then we can write $c=d c^{\prime}$ for some integer c^{\prime}. Since $d=\operatorname{hcf}(a, b)$, we can find
integers x_{0}^{\prime} and y_{0}^{\prime}, such that $a x_{0}^{\prime}+b y_{0}^{\prime}=d$ (for example, by Euclidean algorithm). Multiply both sides by c^{\prime}, then we get $a x_{0}^{\prime} c^{\prime}+b y_{0}^{\prime} c^{\prime}=d c^{\prime}=c$. Therefore $x=x_{0}^{\prime} c^{\prime}$ and $y=y_{0}^{\prime} c^{\prime}$ is a solution.

Solution 2.2. Solving systems of linear equations.
(1) We find a common solution to the first two equations. From the first equation we can write $x=7 q+1$. Substituting x in the second equation to get $7 q+1 \equiv 4$ $(\bmod 9)$, hence $7 q \equiv 3(\bmod 9)$. Adding 18 to 3 and we get $7 q \equiv 21(\bmod 9)$, hence $q \equiv 3(\bmod 9)$. Write $q=9 r+3$ to get $x=7(9 r+3)+1=63 r+22$. So the solution to the first two equations is $x \equiv 22(\bmod 63)$. Now we bring the third equation into the question. By substitution we get $63 r+22 \equiv-2(\bmod 5)$, hence $63 r \equiv-24(\bmod 5)$. We reduce it to $3 r \equiv 1(\bmod 5)$, hence $3 r \equiv 6(\bmod 5)$, which gives $r \equiv 2(\bmod 5)$. Write $r=5 s+2$ to get $x=63(5 s+2)+22=315 s+148$. So the solution to the original system is $x \equiv 148(\bmod 315)$.
(2) Since $\operatorname{hcf}(4,13)=1$ divides 6 and $\operatorname{hcf}(6,8)=2$ divides 4 , both equations have solutions. From $4 x \equiv 6(\bmod 13)$ we get $4 x \equiv 32(\bmod 13)$ hence $x \equiv 8(\bmod 13)$. Write $x=13 q+8$ and substitute x in the second equation to get $6(13 q+8) \equiv 4$ $(\bmod 8)$. We write it as $78 q \equiv-44(\bmod 8)$ and reduce it to $6 q \equiv 4(\bmod 8)$. By cancelling 2 we get $3 q \equiv 2(\bmod 4)$. By adding 4 to 2 we get $3 q \equiv 6(\bmod 4)$ hence $q \equiv 2(\bmod 4)$. We write $q=4 r+2$, then $x=13(4 r+2)+8=52 r+34$. So the solution is $x \equiv 34(\bmod 52)$.

Remark: you might ask if the result is consistent with the Chinese remainder theorem because the modulus is not $13 \times 8=104$. In fact, the solution to the first equation is $x \equiv 8(\bmod 13)$. And the second equation has two solutions $x \equiv 2$ $(\bmod 8)$ and $x \equiv 6(\bmod 8)$. By the Chinese remainder theorem, they combine to give two solutions to the original system, which are $x \equiv 34(\bmod 104)$ and $x \equiv 86$ $(\bmod 104)$. They can be represented by a single congruence $x \equiv 34(\bmod 52)$.
(3) From the first equation we can write $x=15 q+7$. We substitute x in the second equation to get $15 q+7 \equiv 5(\bmod 9)$. That is $15 q \equiv-2(\bmod 9)$, which reduces to $6 q \equiv 7(\bmod 9)$. Notice that $\operatorname{hcf}(6,9)=3$ which does not divide 7 . By Proposition 2.5 , this equation has no solution. Hence so is the original system.

Solution 2.3. Cancellation law for congruences.
(1) Since $k \mid m$, we can write $m=k m^{\prime}$ for some integer m^{\prime}. For one direction, assume $k a \equiv k b(\bmod m)$. Then there exists some $c \in \mathbb{Z}$ such that $k a-k b=c m$. We divide both sides by k to get $a-b=c m^{\prime}$, which implies $a \equiv b\left(\bmod m^{\prime}\right)$, as required.

For the other direction, assume $a \equiv b\left(\bmod m^{\prime}\right)$. Then there exists some $c \in \mathbb{Z}$ such that $a-b=c m^{\prime}$. We multiply both sides by k to get $k a-k b=c k m^{\prime}=c m$, which implies $k a \equiv k b(\bmod m)$.
(2) Since $k a \equiv k b(\bmod m)$, we know $m \mid(k a-k b)=k(a-b)$. Since $\operatorname{hcf}(k, m)=1$, we claim that we have $m \mid(a-b)$. Indeed, using the condition $\operatorname{hcf}(k, m)=1$, we can find some $\alpha, \beta \in \mathbb{Z}$, such that $k \alpha+m \beta=1$. Multiply both sides by $a-b$ to get $k(a-b) \alpha+m(a-b) \beta=a-b$. Since m divides both terms on the left-hand side, we conclude that m divides the right-hand side; i.e. $m \mid(a-b)$. It follows that $a \equiv b(\bmod m)$.

For the other direction, assume $a \equiv b(\bmod m)$. Then we know $m \mid(a-b)$, hence $m \mid k(a-b)=k a-k b$. It follows that $k a \equiv k b(\bmod m)$.
(3) Since $\operatorname{hcf}(k, m)=d$, we can write $k=d k^{\prime}$ and $m=d m^{\prime}$. By Exercise 1.1 (2), we know $\operatorname{hcf}\left(k^{\prime}, m^{\prime}\right)=1$. The condition $k a \equiv k b(\bmod m)$ is equivalent to $d k^{\prime} a \equiv d k^{\prime} b$ $\left(\bmod d m^{\prime}\right)$, which is equivalent to $k^{\prime} a \equiv k^{\prime} b\left(\bmod m^{\prime}\right)$ by part (1), which is further equivalent to $a \equiv b\left(\bmod m^{\prime}\right)$ by part (2). This proves the equivalence required in question.

Solution 2.4. Wilson's theorem and beyond.
(1) We write $S=\{1,2, \cdots, p-1\}$. For any $k \in S$, $p \nmid k$ hence $\operatorname{hcf}(k, p)=1$, which implies $k x \equiv 1(\bmod p)$ has a unique solution modulo p by Proposition 2.5. Since the congruence class $\overline{0}$ is not the solution, this solution must be a congruence class \bar{b} for some b not divisible by p. This congruence contains exactly one element in the set S, which we call b_{k}. Therefore this b_{k} is the unique solution in S to the equation $k x \equiv 1(\bmod p)$.
(2) When $k=1$, it is clear that $b_{k}=1$ does satisfy the equation $k b_{k} \equiv 1(\bmod p)$. When $k=p-1$, it is also clear that $b_{k}=p-1$ satisfy the same equation because $k b_{k}=(p-1)(p-1) \equiv(-1)(-1)=1(\bmod p)$.

It remains to show that these are the only values of k which make $k=b_{k}$. In other words, if $k^{2} \equiv 1(\bmod p)$ is satisfied by some $k \in S$, we want to show that $k=1$ or $k=p-1$. Indeed, the equation $k^{2} \equiv 1(\bmod p)$ is equivalent to $p \mid\left(k^{2}-1\right)=(k+1)(k-1)$, which implies that either $p \mid k+1$ or $p \mid k-1$ because p is a prime. If $p \mid k+1$, then $k \equiv-1(\bmod p)$, so the only value in S is $k=p-1$. If $p \mid k-1$, then $k \equiv 1(\bmod p)$, so the only value in S is $k=1$. This shows that the only values for k which make $k=b_{k}$ are $k=1$ and $k=p-1$.
(3) By parts (1) and (2), the set $S \backslash\{1, p-1\}$ can be divided into pairs, such that the product of the two elements in each pair is congruent to 1 modulo p. Hence the product of all elements in $S \backslash\{1, p-1\}$ is congruent to 1 modulo p. Taking the
remaining two elements 1 and $p-1$ into consideration, the product of all elements in S is congruent to $p-1$ modulo p, or equivalently, -1 modulo p.
(4) Assume n is composite and $n \neq 4$, then we can write $n=a b$ for some $a, b \in \mathbb{Z}$, $1<a, b<n$. There are two cases. If $a \neq b$, then a and b appear as distinct factors in $(n-1)$!. Hence $(n-1)$! is a multiple of $a b$. In other words, $(n-1)!\equiv 0$ $(\bmod n)$. If $a=b$, then the assumption implies $a=b \geqslant 3$, hence $2 a<a b=n$. Now a and $2 a$ appear as distinct factors in $(n-1)$!. Hence $(n-1)$! is a multiple of $a \cdot 2 a=2 a b=2 n$, which implies $(n-1)!\equiv 0(\bmod n)$. When $n=4$, we have $(4-1)!=3!=6 \equiv 2(\bmod 4)$.
(5) The "if" part is proved in part (3) for odd primes, and is clear for $n=2$. The contrapositive of the "only if" part is proved in part (4). Therefore the condition $(n-1)!\equiv-1(\bmod n)$ is equivalent to n being a prime.

