Solutions to Exercise Sheet 2

Solution 2.1. Solving linear equations.

(1) We use the Euclidean algorithm to compute hcf(140, 84) and decide if the equation has a solution.

$$140 = 84 \times 1 + 56;$$

$$84 = 56 \times 1 + 28;$$

$$56 = 28 \times 2 + 0.$$

Hence hcf(140, 84) = 28, which does not divide 98. By Proposition 2.5, the equation has no solution.

(2) By Euclidean algorithm, we can find hcf(28, 116).

$$116 = 28 \times 4 + 4;$$

 $28 = 4 \times 7 + 0.$

Hence hcf(28, 116) = 4, which divides 124. So the equation has 4 solutions modulo 116. We can solve it first by cancelling 4 to get $7x \equiv 31 \pmod{29}$, which reduces to $7x \equiv 2 \pmod{29}$. Now we use Euclidean algorithm for the pair 7 and 29.

$$29 = 7 \times 4 + 1;$$

7 = 1 × 7 + 0.

So we simply have $1 = 29 - 7 \times 4$ hence $7 \times (-4) \equiv 1 \pmod{29}$. Multiply both sides by 2 to get $7 \times (-8) \equiv 2 \pmod{29}$. Since we usually prefer to use positive numbers as representatives of congruence classes, we add 29 to -8 to get 21. Hence $x \equiv 21 \pmod{29}$. To get solutions modulo 116, we keep adding 29 to 21 until we get repeated congruence classes. So we have $x \equiv 21, 50, 79$ or 108 (mod 116), which are all solutions to the original equation.

- (3) We write it as a congruence equation $12x \equiv 17 \pmod{7}$. Since hcf(12, 7) = 1, we should have a unique solution to it. To solve the equation we can add multiples of 7 to 17 until we can cancel the coefficient 12. Hence we have $12x \equiv 24 \pmod{7}$, then $x \equiv 2 \pmod{7}$. We write x = 7k+2 for an arbitrary $k \in \mathbb{Z}$, then substitute x in the original equation to get 12(7k+2)+7y = 17. Therefore we have 7y = -84k-7 thus y = -12k-1. The solutions to the original equation is x = 7k+2, y = -12k-1 for an arbitrary $k \in \mathbb{Z}$.
- (4) For simplicity we write d = hcf(a, b). For one direction, assume that ax + by = c has a solution $x = x_0$ and $y = y_0$. Then $ax_0 + by_0 = c$. Since $d \mid a$ and $d \mid b$, we know $d \mid (ax + by)$, which gives $d \mid c$. For the other direction, assume $d \mid c$, then we can write c = dc' for some integer c'. Since d = hcf(a, b), we can find

integers x'_0 and y'_0 , such that $ax'_0 + by'_0 = d$ (for example, by Euclidean algorithm). Multiply both sides by c', then we get $ax'_0c' + by'_0c' = dc' = c$. Therefore $x = x'_0c'$ and $y = y'_0c'$ is a solution.

Solution 2.2. Solving systems of linear equations.

- (1) We find a common solution to the first two equations. From the first equation we can write x = 7q + 1. Substituting x in the second equation to get $7q + 1 \equiv 4 \pmod{9}$, hence $7q \equiv 3 \pmod{9}$. Adding 18 to 3 and we get $7q \equiv 21 \pmod{9}$, hence $q \equiv 3 \pmod{9}$. Write q = 9r + 3 to get x = 7(9r + 3) + 1 = 63r + 22. So the solution to the first two equations is $x \equiv 22 \pmod{63}$. Now we bring the third equation into the question. By substitution we get $63r + 22 \equiv -2 \pmod{5}$, hence $63r \equiv -24 \pmod{5}$. We reduce it to $3r \equiv 1 \pmod{5}$, hence $3r \equiv 6 \pmod{5}$, which gives $r \equiv 2 \pmod{5}$. Write $r = 5s + 2 \operatorname{to} \operatorname{get} x = 63(5s + 2) + 22 = 315s + 148$. So the solution to the original system is $x \equiv 148 \pmod{315}$.
- (2) Since hcf(4, 13) = 1 divides 6 and hcf(6, 8) = 2 divides 4, both equations have solutions. From $4x \equiv 6 \pmod{13}$ we get $4x \equiv 32 \pmod{13}$ hence $x \equiv 8 \pmod{13}$. Write x = 13q + 8 and substitute x in the second equation to get $6(13q + 8) \equiv 4 \pmod{8}$. We write it as $78q \equiv -44 \pmod{8}$ and reduce it to $6q \equiv 4 \pmod{8}$. By cancelling 2 we get $3q \equiv 2 \pmod{4}$. By adding 4 to 2 we get $3q \equiv 6 \pmod{4}$ hence $q \equiv 2 \pmod{4}$. We write q = 4r + 2, then x = 13(4r + 2) + 8 = 52r + 34. So the solution is $x \equiv 34 \pmod{52}$.

Remark: you might ask if the result is consistent with the Chinese remainder theorem because the modulus is not $13 \times 8 = 104$. In fact, the solution to the first equation is $x \equiv 8 \pmod{13}$. And the second equation has two solutions $x \equiv 2 \pmod{8}$ and $x \equiv 6 \pmod{8}$. By the Chinese remainder theorem, they combine to give two solutions to the original system, which are $x \equiv 34 \pmod{104}$ and $x \equiv 86 \pmod{104}$. They can be represented by a single congruence $x \equiv 34 \pmod{52}$.

(3) From the first equation we can write x = 15q + 7. We substitute x in the second equation to get $15q + 7 \equiv 5 \pmod{9}$. That is $15q \equiv -2 \pmod{9}$, which reduces to $6q \equiv 7 \pmod{9}$. Notice that hcf(6, 9) = 3 which does not divide 7. By Proposition 2.5, this equation has no solution. Hence so is the original system.

Solution 2.3. Cancellation law for congruences.

(1) Since $k \mid m$, we can write m = km' for some integer m'. For one direction, assume $ka \equiv kb \pmod{m}$. Then there exists some $c \in \mathbb{Z}$ such that ka - kb = cm. We divide both sides by k to get a - b = cm', which implies $a \equiv b \pmod{m'}$, as required.

For the other direction, assume $a \equiv b \pmod{m'}$. Then there exists some $c \in \mathbb{Z}$ such that a - b = cm'. We multiply both sides by k to get ka - kb = ckm' = cm, which implies $ka \equiv kb \pmod{m}$.

(2) Since $ka \equiv kb \pmod{m}$, we know $m \mid (ka - kb) = k(a - b)$. Since hcf(k, m) = 1, we claim that we have $m \mid (a - b)$. Indeed, using the condition hcf(k, m) = 1, we can find some $\alpha, \beta \in \mathbb{Z}$, such that $k\alpha + m\beta = 1$. Multiply both sides by a - b to get $k(a - b)\alpha + m(a - b)\beta = a - b$. Since m divides both terms on the left-hand side, we conclude that m divides the right-hand side; i.e. $m \mid (a - b)$. It follows that $a \equiv b \pmod{m}$.

For the other direction, assume $a \equiv b \pmod{m}$. Then we know $m \mid (a - b)$, hence $m \mid k(a - b) = ka - kb$. It follows that $ka \equiv kb \pmod{m}$.

(3) Since hcf(k, m) = d, we can write k = dk' and m = dm'. By Exercise 1.1 (2), we know hcf(k', m') = 1. The condition $ka \equiv kb \pmod{m}$ is equivalent to $dk'a \equiv dk'b \pmod{m'}$, which is equivalent to $k'a \equiv k'b \pmod{m'}$ by part (1), which is further equivalent to $a \equiv b \pmod{m'}$ by part (2). This proves the equivalence required in question.

Solution 2.4. Wilson's theorem and beyond.

- (1) We write $S = \{1, 2, \dots, p-1\}$. For any $k \in S$, $p \nmid k$ hence hcf(k, p) = 1, which implies $kx \equiv 1 \pmod{p}$ has a unique solution modulo p by Proposition 2.5. Since the congruence class $\overline{0}$ is not the solution, this solution must be a congruence class \overline{b} for some b not divisible by p. This congruence contains exactly one element in the set S, which we call b_k . Therefore this b_k is the unique solution in S to the equation $kx \equiv 1 \pmod{p}$.
- (2) When k = 1, it is clear that $b_k = 1$ does satisfy the equation $kb_k \equiv 1 \pmod{p}$. When k = p - 1, it is also clear that $b_k = p - 1$ satisfy the same equation because $kb_k = (p-1)(p-1) \equiv (-1)(-1) = 1 \pmod{p}$.

It remains to show that these are the only values of k which make $k = b_k$. In other words, if $k^2 \equiv 1 \pmod{p}$ is satisfied by some $k \in S$, we want to show that k = 1 or k = p - 1. Indeed, the equation $k^2 \equiv 1 \pmod{p}$ is equivalent to $p \mid (k^2 - 1) = (k + 1)(k - 1)$, which implies that either $p \mid k + 1$ or $p \mid k - 1$ because p is a prime. If $p \mid k + 1$, then $k \equiv -1 \pmod{p}$, so the only value in S is k = p - 1. If $p \mid k - 1$, then $k \equiv 1 \pmod{p}$, so the only value in S is k = p - 1. If $p \mid k - 1$, then $k \equiv 1 \pmod{p}$, so the only value in S is k = 1. This shows that the only values for k which make $k = b_k$ are k = 1 and k = p - 1.

(3) By parts (1) and (2), the set $S \setminus \{1, p-1\}$ can be divided into pairs, such that the product of the two elements in each pair is congruent to 1 modulo p. Hence the product of all elements in $S \setminus \{1, p-1\}$ is congruent to 1 modulo p. Taking the

remaining two elements 1 and p-1 into consideration, the product of all elements in S is congruent to p-1 modulo p, or equivalently, -1 modulo p.

- (4) Assume n is composite and $n \neq 4$, then we can write n = ab for some $a, b \in \mathbb{Z}$, 1 < a, b < n. There are two cases. If $a \neq b$, then a and b appear as distinct factors in (n-1)!. Hence (n-1)! is a multiple of ab. In other words, $(n-1)! \equiv 0 \pmod{n}$. If a = b, then the assumption implies $a = b \ge 3$, hence 2a < ab = n. Now a and 2a appear as distinct factors in (n-1)!. Hence (n-1)! is a multiple of $a \cdot 2a = 2ab = 2n$, which implies $(n-1)! \equiv 0 \pmod{n}$. When n = 4, we have $(4-1)! = 3! = 6 \equiv 2 \pmod{4}$.
- (5) The "if" part is proved in part (3) for odd primes, and is clear for n = 2. The contrapositive of the "only if" part is proved in part (4). Therefore the condition $(n-1)! \equiv -1 \pmod{n}$ is equivalent to n being a prime.