
Solutions to Exercise Sheet 3

Solution 3.1. Examples of primitive roots.

(1) Since the group Z�
29 has φp29q � 28 elements, we need to show that 2 has order

28 modulo 29. All positive divisors of 28 are 1, 2, 4, 7, 14 and 28. Since the order

of 2 must be a positive divisor of 28, it suffices to show that 2k � 1 pmod 29q
for k � 1, 2, 4, 7, 14. This can be done by direct computation. 21 � 2 pmod 29q,
22 � 4 pmod 29q, 24 � 16 pmod 29q, 27 � 128 � 12 pmod 29q, 214 � 122 � 144 �
28 � �1 pmod 29q. None of these remainders is 1 pmod 29q, hence the order of

2 must be 28. In other words, 2 is a primitive root modulo 29. The number of

generators of Z�
29 is φp28q � 28p1� 1

2
qp1� 1

7
q � 12.

(2) By Remark 3.9, it suffices to show that 2 is a primitive root modulo 11 and the

condition 210 � 1 pmod 112q. To show 2 is a primitive root modulo 11, we need to

show 2 has order 10 modulo 11. In other words, its order is not 1, 2 or 5. Indeed,

21 � 2 pmod 11q, 22 � 4 pmod 11q, 25 � 32 � 10 pmod 11q. None of them is

congruent to 1 modulo 29, hence 2 is a primitive root modulo 11. To show the

second condition 210 � 1 pmod 112q, we simply compute 210 � 1024 � 56 � 1

pmod 121q. Hence 2 is a primitive root modulo 113. The number of generators in

Z�
113 is given by φpφp113qq � φp10� 112q � 440.

(3) We consider primitive roots modulo 10. We have φp10q � 4 and we can even

write down Z�
10 � t1, 3, 7, 9u. We show 3 is a primitive root (in other words 3 is

a generator of Z�
10). Indeed, 3 � 3 pmod 10q, 32 � 9 pmod 10q, so the order of 3

modulo 10 is not 1 or 2, hence must be 4. By Remark 3.2 (3), the generators of

Z�
10 are 3 and 3

3 � 27 � 7. Hence a P Z is a primitive root modulo 10 iff a � 3 or

7 pmod 10q.
We consider primitive roots modulo 11. We have found in part (2) that 2

is a primitive root modulo 11. By Remark 3.2 (3), we need to compute the

congruence classes of 2k modulo 11, where 1 ¤ k ¤ 10 and hcfpk, 10q � 1; i.e.,

k � 1, 3, 7, 9. So we have 21 � 2 pmod 11q, 23 � 8 pmod 11q, 27 � 128 � 7

pmod 11q, 29 � 7 � 4 � 6 pmod 11q. Therefore a P Z is a primitive root modulo

11 iff a � 2, 6, 7 or 8 pmod 11q.
We finally consider primitive roots modulo 12. We have the factorisation 12 �

22 � 3. We compare it with the list of forms in Theorem 3.10, but it does not

match any of the given forms. Therefore there are no primitive roots modulo 12.

Solution 3.2. Applications in solving non-linear equations.

(1) Since g is a primitive root modulo p, we know that the order of g modulo p is

φppq � p � 1. In other words, gp�1 � 1 pmod pq and gl � 1 pmod pq for any
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1 ¤ l   p � 1. Let a � g
p�1
d . We want to show a has order d. In other words,

ad � 1 pmod pq and ak � 1 pmod pq for any 1 ¤ k   d� 1.

On one hand, ad � gp�1 � 1 pmod pq. On the other hand, for any k with

1 ¤ k   d, ak � gk�
p�1
d pmod pq. Since 0   k � p�1

d
  p � 1, ak � 1 pmod pq.

Therefore we conclude a has order d modulo p.

(2) Let b � g
p�1
2 . By part (1) we know b has order 2 modulo p. In other words, b2 � 1

pmod pq and b � 1 pmod pq. The first condition implies p � pb2�1q � pb�1qpb�1q,
hence either p � b�1 or p � b�1, or equivalently, b � �1 pmod pq or b � 1 pmod pq.
The second condition rules out the second possibility. Hence g

p�1
2 � b � �1

pmod pq is the only possibility.

(3) Let g � 2 be the primitive root modulo 29 found in Exercise 3.1 (1), then g28 � 1

pmod 29q. Therefore for any k P Z, x � g4k pmod 29q is a solution to the equation

x7 � 1 pmod 29q because pg4kq7 � g28k � 1k � 1 pmod 29q. In particular, the

congruence classes of g4k for 0 ¤ k ¤ 6 are distinct solutions because g has order

28 modulo 29 (indeed, the congruence classes of gl for 0 ¤ l   28 modulo 29

are all distinct). On the other hand, since Z29 is a field by Proposition 2.9, the

equation x7 � 1 has at most 7 distinct solutions in Z29; in other words, at most

7 distinct congruence classes. Therefore x � g4k pmod 29q for 0 ¤ k ¤ 6 are all

solutions. We do explicit computation: 20 � 1 pmod 29q, 24 � 16 pmod 29q, 28 �
162 � 24 � �5 pmod 29q, 212 � 2428 � 16 � p�5q � 7 pmod 29q, 216 � p28q2 �
p�5q2 � 25 � �4 pmod 29q, 220 � 24216 � 16 � p�4q � 23 � �6 pmod 29q,
224 � p212q2 � 72 � 20 pmod 29q. Therefore all solutions to the equation x7 � 1

pmod 29q are x � 1, 16, 24, 7, 25, 23 or 20 pmod 29q.

Solution 3.3. Applications in higher order residues.

(1) For the “if” part, we assume a � gdk pmod pq. Then x � gk pmod pq is clearly

a solution to xd � a pmod pq. For the “only if” part, assume xd � a pmod pq
has a solution x � x0 pmod pq. Then p � x0 because xd0 � a pmod pq and p � a.

Therefore x0 is an element in Z�
p hence x0 � gk pmod pq for some k P Z (because

g is a generator of Z�
p). Therefore a � xd0 � gdk pmod pq.

(2) By part (1), it suffices to show that a � gdk pmod pq is equivalent to a
p�1
d � 1

pmod pq. We first assume a � gdk pmod pq. Then a
p�1
d � pgdkq p�1

d � gkpp�1q � 1

pmod pq since gp�1 � 1 pmod pq. For the other direction, since p � a, a P Z�
p .

Hence a � gl pmod pq for some l P Z. Then a
p�1
d � gl�

p�1
d � 1 pmod pq. Since g

has order p � 1 modulo p, we conclude that l � p�1
d

must be a multiple of p � 1.

(This uses a fact in group theory: assume an element g in a group G has order

q, then gr � e is the identity of the group iff q � r.) In other words, there exists
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some k P Z, such that l � p�1
d
� kpp � 1q. This simplifies to l � dk, hence a � gdk

pmod pq for some k P Z.

(3) We use the result from part (1). x4 � a mod 29 has solutions iff a � g4k

pmod 29q. We know from Exercise 3.1 (1) that g � 2 is a primitive root mod-

ulo 29. Therefore a � 24k pmod 29q for k P Z. For 0 ¤ k ¤ 6 the formula gives

distinct congruence classes. Therefore x4 � a pmod 29q has solutions iff a � 24k

for 0 ¤ k ¤ 6. To find the corresponding values of a within the range 0   a   29,

we need to find the remainder of each 24k modulo 29. This calculation has been

done in Exercise 3.3 (3); i.e. a � 1, 16, 24, 7, 25, 23 or 20.

Solution 3.4. Characterisation of primitive roots modulo higher powers of odd primes.

(1) Since a � b pmod plq, we can write a � b � c � pl for some c P Z. We then take

p-th power on both sides and expand the right-hand side. We get

ap � pb� c � plqp � bp � p � bp�1cpl �
p̧

i�2

�
p

i



bp�icipil.

We claim that every term on the right-hand side except bp is divisible by pl�1.

Indeed, the second term p � bp�1cpl is clearly divisible by pl�1. For every term in

the summation, the exponent in the power pil is at least il ¥ 2l � l � l ¥ l � 1,

hence pl�1 divides the term
�
p
i

�
bp�icipil for each i ¥ 2. Therefore, modulo pl�1, the

above equation can be written as ap � bp pmod pl�1q.
(2) We assume the order of g modulo pm is d. We need to show d � φppmq. It suffices

to prove that d � φppmq and φppmq � d. For the first division, notice that Z�
pm has

order φppmq, hence the order d of any element g is a positive divisor of φppmq; that

is d � φppmq. For the second division, we apply the statement in part (1) on the

congruence gd � 1 pmod pmq for n �m times. Step by step we will get gdp � 1

pmod pm�1q, gdp2 � 1 pmod pm�2q, � � � , gdpn�m � 1 pmod pnq. Since g has order

φppnq modulo pn, the last congruence implies φppnq � dpn�m. (This uses again the

fact in group theory: assume an element g in a group G has order q, then gr � e

is the identity of the group iff q � r.) Hence dpn�m � cφppnq � cpp � 1qpn�1 for

some c P Z. It follows that d � cpp � 1qpm�1 � cφppmq, hence φppmq � d which is

the second division. The two divisions guarantee d � φppmq.
(3) The sufficiency is stated in Remark 3.9 and proved in Proposition 3.8. We still

need to prove the necessity of the two given conditions. Since g is a primitive root

modulo pl, using the statement in part (2), we know g is a primitive root modulo

p and p2 because l ¥ 2, which prove the two conditions respectively. Indeed, the

first condition is clear. For the second condition, since g has order φpp2q modulo

p2, we know that for any integer d, 1 ¤ d   φpp2q, gd � 1 pmod p2q. In particular,

it holds for d � p� 1.
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