Solutions to Exercise Sheet 3

Solution 3.1. Examples of primitive roots.
(1) Since the group \mathbb{Z}_{29}^{*} has $\phi(29)=28$ elements, we need to show that 2 has order 28 modulo 29. All positive divisors of 28 are $1,2,4,7,14$ and 28 . Since the order of 2 must be a positive divisor of 28 , it suffices to show that $2^{k} \not \equiv 1(\bmod 29)$ for $k=1,2,4,7,14$. This can be done by direct computation. $2^{1} \equiv 2(\bmod 29)$, $2^{2} \equiv 4(\bmod 29), 2^{4} \equiv 16(\bmod 29), 2^{7}=128 \equiv 12(\bmod 29), 2^{14} \equiv 12^{2}=144 \equiv$ $28 \equiv-1(\bmod 29)$. None of these remainders is $1(\bmod 29)$, hence the order of 2 must be 28 . In other words, 2 is a primitive root modulo 29 . The number of generators of \mathbb{Z}_{29}^{*} is $\phi(28)=28\left(1-\frac{1}{2}\right)\left(1-\frac{1}{7}\right)=12$.
(2) By Remark 3.9, it suffices to show that 2 is a primitive root modulo 11 and the condition $2^{10} \not \equiv 1\left(\bmod 11^{2}\right)$. To show 2 is a primitive root modulo 11 , we need to show 2 has order 10 modulo 11. In other words, its order is not 1,2 or 5 . Indeed, $2^{1} \equiv 2(\bmod 11), 2^{2} \equiv 4(\bmod 11), 2^{5}=32 \equiv 10(\bmod 11)$. None of them is congruent to 1 modulo 29 , hence 2 is a primitive root modulo 11 . To show the second condition $2^{10} \not \equiv 1\left(\bmod 11^{2}\right)$, we simply compute $2^{10}=1024 \equiv 56 \not \equiv 1$ $(\bmod 121)$. Hence 2 is a primitive root modulo 11^{3}. The number of generators in $\mathbb{Z}_{11^{3}}^{*}$ is given by $\phi\left(\phi\left(11^{3}\right)\right)=\phi\left(10 \times 11^{2}\right)=440$.
(3) We consider primitive roots modulo 10 . We have $\phi(10)=4$ and we can even write down $\mathbb{Z}_{10}^{*}=\{\overline{1}, \overline{3}, \overline{7}, \overline{9}\}$. We show 3 is a primitive root (in other words $\overline{3}$ is a generator of $\left.\mathbb{Z}_{10}^{*}\right)$. Indeed, $3 \equiv 3(\bmod 10), 3^{2} \equiv 9(\bmod 10)$, so the order of 3 modulo 10 is not 1 or 2 , hence must be 4 . By Remark 3.2 (3), the generators of \mathbb{Z}_{10}^{*} are $\overline{3}$ and $\overline{3}^{3}=\overline{27}=\overline{7}$. Hence $a \in \mathbb{Z}$ is a primitive root modulo 10 iff $a \equiv 3$ or $7(\bmod 10)$.

We consider primitive roots modulo 11 . We have found in part (2) that 2 is a primitive root modulo 11. By Remark 3.2 (3), we need to compute the congruence classes of 2^{k} modulo 11 , where $1 \leqslant k \leqslant 10$ and $\operatorname{hcf}(k, 10)=1$; i.e., $k=1,3,7,9$. So we have $2^{1} \equiv 2(\bmod 11), 2^{3} \equiv 8(\bmod 11), 2^{7}=128 \equiv 7$ $(\bmod 11), 2^{9} \equiv 7 \times 4 \equiv 6(\bmod 11)$. Therefore $a \in \mathbb{Z}$ is a primitive root modulo 11 iff $a \equiv 2,6,7$ or $8(\bmod 11)$.

We finally consider primitive roots modulo 12 . We have the factorisation $12=$ $2^{2} \times 3$. We compare it with the list of forms in Theorem 3.10, but it does not match any of the given forms. Therefore there are no primitive roots modulo 12.

Solution 3.2. Applications in solving non-linear equations.
(1) Since g is a primitive root modulo p, we know that the order of g modulo p is $\phi(p)=p-1$. In other words, $g^{p-1} \equiv 1(\bmod p)$ and $g^{l} \not \equiv 1(\bmod p)$ for any
$1 \leqslant l<p-1$. Let $a=g^{\frac{p-1}{d}}$. We want to show a has order d. In other words, $a^{d} \equiv 1(\bmod p)$ and $a^{k} \not \equiv 1(\bmod p)$ for any $1 \leqslant k<d-1$.

On one hand, $a^{d}=g^{p-1} \equiv 1(\bmod p)$. On the other hand, for any k with $1 \leqslant k<d, a^{k} \equiv g^{k \cdot \frac{p-1}{d}}(\bmod p)$. Since $0<k \cdot \frac{p-1}{d}<p-1, a^{k} \not \equiv 1(\bmod p)$. Therefore we conclude a has order d modulo p.
(2) Let $b=g^{\frac{p-1}{2}}$. By part (1) we know b has order 2 modulo p. In other words, $b^{2} \equiv 1$ $(\bmod p)$ and $b \not \equiv 1(\bmod p)$. The first condition implies $p \mid\left(b^{2}-1\right)=(b+1)(b-1)$, hence either $p \mid b+1$ or $p \mid b-1$, or equivalently, $b \equiv-1(\bmod p)$ or $b \equiv 1(\bmod p)$. The second condition rules out the second possibility. Hence $g^{\frac{p-1}{2}}=b \equiv-1$ $(\bmod p)$ is the only possibility.
(3) Let $g=2$ be the primitive root modulo 29 found in Exercise 3.1 (1), then $g^{28} \equiv 1$ $(\bmod 29)$. Therefore for any $k \in \mathbb{Z}, x \equiv g^{4 k}(\bmod 29)$ is a solution to the equation $x^{7} \equiv 1(\bmod 29)$ because $\left(g^{4 k}\right)^{7}=g^{28 k} \equiv 1^{k}=1(\bmod 29)$. In particular, the congruence classes of $g^{4 k}$ for $0 \leqslant k \leqslant 6$ are distinct solutions because g has order 28 modulo 29 (indeed, the congruence classes of g^{l} for $0 \leqslant l<28$ modulo 29 are all distinct). On the other hand, since \mathbb{Z}_{29} is a field by Proposition 2.9, the equation $x^{7}=1$ has at most 7 distinct solutions in \mathbb{Z}_{29}; in other words, at most 7 distinct congruence classes. Therefore $x \equiv g^{4 k}(\bmod 29)$ for $0 \leqslant k \leqslant 6$ are all solutions. We do explicit computation: $2^{0} \equiv 1(\bmod 29), 2^{4} \equiv 16(\bmod 29), 2^{8} \equiv$ $16^{2} \equiv 24 \equiv-5(\bmod 29), 2^{12}=2^{4} 2^{8} \equiv 16 \times(-5) \equiv 7(\bmod 29), 2^{16}=\left(2^{8}\right)^{2} \equiv$ $(-5)^{2}=25 \equiv-4(\bmod 29), 2^{20} \equiv 2^{4} 2^{16} \equiv 16 \times(-4) \equiv 23 \equiv-6(\bmod 29)$, $2^{24} \equiv\left(2^{12}\right)^{2} \equiv 7^{2} \equiv 20(\bmod 29)$. Therefore all solutions to the equation $x^{7} \equiv 1$ $(\bmod 29)$ are $x \equiv 1,16,24,7,25,23$ or $20(\bmod 29)$.

Solution 3.3. Applications in higher order residues.
(1) For the "if" part, we assume $a \equiv g^{d k}(\bmod p)$. Then $x \equiv g^{k}(\bmod p)$ is clearly a solution to $x^{d} \equiv a(\bmod p)$. For the "only if" part, assume $x^{d} \equiv a(\bmod p)$ has a solution $x \equiv x_{0}(\bmod p)$. Then $p \nmid x_{0}$ because $x_{0}^{d} \equiv a(\bmod p)$ and $p \nmid a$. Therefore \bar{x}_{0} is an element in \mathbb{Z}_{p}^{*} hence $x_{0} \equiv g^{k}(\bmod p)$ for some $k \in \mathbb{Z}$ (because \bar{g} is a generator of $\left.\mathbb{Z}_{p}^{*}\right)$. Therefore $a \equiv x_{0}^{d} \equiv g^{d k}(\bmod p)$.
(2) By part (1), it suffices to show that $a \equiv g^{d k}(\bmod p)$ is equivalent to $a^{\frac{p-1}{d}} \equiv 1$ $(\bmod p)$. We first assume $a \equiv g^{d k}(\bmod p)$. Then $a^{\frac{p-1}{d}} \equiv\left(g^{d k}\right)^{\frac{p-1}{d}}=g^{k(p-1)} \equiv 1$ $(\bmod p)$ since $g^{p-1} \equiv 1(\bmod p)$. For the other direction, since $p \nmid a, \bar{a} \in \mathbb{Z}_{p}^{*}$. Hence $a \equiv g^{l}(\bmod p)$ for some $l \in \mathbb{Z}$. Then $a^{\frac{p-1}{d}} \equiv g^{l \cdot \frac{p-1}{d}} \equiv 1(\bmod p)$. Since g has order $p-1$ modulo p, we conclude that $l \cdot \frac{p-1}{d}$ must be a multiple of $p-1$. (This uses a fact in group theory: assume an element g in a group G has order q, then $g^{r}=e$ is the identity of the group iff $q \mid r$.) In other words, there exists
some $k \in \mathbb{Z}$, such that $l \cdot \frac{p-1}{d}=k(p-1)$. This simplifies to $l=d k$, hence $a \equiv g^{d k}$ $(\bmod p)$ for some $k \in \mathbb{Z}$.
(3) We use the result from part (1). $x^{4} \equiv a \bmod 29$ has solutions iff $a \equiv g^{4 k}$ (mod 29). We know from Exercise 3.1 (1) that $g=2$ is a primitive root modulo 29. Therefore $a \equiv 2^{4 k}(\bmod 29)$ for $k \in \mathbb{Z}$. For $0 \leqslant k \leqslant 6$ the formula gives distinct congruence classes. Therefore $x^{4} \equiv a(\bmod 29)$ has solutions iff $a \equiv 2^{4 k}$ for $0 \leqslant k \leqslant 6$. To find the corresponding values of a within the range $0<a<29$, we need to find the remainder of each $2^{4 k}$ modulo 29 . This calculation has been done in Exercise 3.3 (3); i.e. $a=1,16,24,7,25,23$ or 20.

Solution 3.4. Characterisation of primitive roots modulo higher powers of odd primes.
(1) Since $a \equiv b\left(\bmod p^{l}\right)$, we can write $a=b+c \cdot p^{l}$ for some $c \in \mathbb{Z}$. We then take p-th power on both sides and expand the right-hand side. We get

$$
a^{p}=\left(b+c \cdot p^{l}\right)^{p}=b^{p}+p \cdot b^{p-1} c p^{l}+\sum_{i=2}^{p}\binom{p}{i} b^{p-i} c^{i} p^{i l}
$$

We claim that every term on the right-hand side except b^{p} is divisible by p^{l+1}. Indeed, the second term $p \cdot b^{p-1} c p^{l}$ is clearly divisible by p^{l+1}. For every term in the summation, the exponent in the power $p^{i l}$ is at least $i l \geqslant 2 l=l+l \geqslant l+1$, hence p^{l+1} divides the term $\binom{p}{i} b^{p-i} c^{i} p^{i l}$ for each $i \geqslant 2$. Therefore, modulo p^{l+1}, the above equation can be written as $a^{p} \equiv b^{p}\left(\bmod p^{l+1}\right)$.
(2) We assume the order of g modulo p^{m} is d. We need to show $d=\phi\left(p^{m}\right)$. It suffices to prove that $d \mid \phi\left(p^{m}\right)$ and $\phi\left(p^{m}\right) \mid d$. For the first division, notice that $\mathbb{Z}_{p^{m}}^{*}$ has order $\phi\left(p^{m}\right)$, hence the order d of any element \bar{g} is a positive divisor of $\phi\left(p^{m}\right)$; that is $d \mid \phi\left(p^{m}\right)$. For the second division, we apply the statement in part (1) on the congruence $g^{d} \equiv 1\left(\bmod p^{m}\right)$ for $n-m$ times. Step by step we will get $g^{d p} \equiv 1$ $\left(\bmod p^{m+1}\right), g^{d p^{2}} \equiv 1\left(\bmod p^{m+2}\right), \cdots, g^{d p^{n-m}} \equiv 1\left(\bmod p^{n}\right)$. Since g has order $\phi\left(p^{n}\right)$ modulo p^{n}, the last congruence implies $\phi\left(p^{n}\right) \mid d p^{n-m}$. (This uses again the fact in group theory: assume an element g in a group G has order q, then $g^{r}=e$ is the identity of the group iff $q \mid r$.) Hence $d p^{n-m}=c \phi\left(p^{n}\right)=c(p-1) p^{n-1}$ for some $c \in \mathbb{Z}$. It follows that $d=c(p-1) p^{m-1}=c \phi\left(p^{m}\right)$, hence $\phi\left(p^{m}\right) \mid d$ which is the second division. The two divisions guarantee $d=\phi\left(p^{m}\right)$.
(3) The sufficiency is stated in Remark 3.9 and proved in Proposition 3.8. We still need to prove the necessity of the two given conditions. Since g is a primitive root modulo p^{l}, using the statement in part (2), we know g is a primitive root modulo p and p^{2} because $l \geqslant 2$, which prove the two conditions respectively. Indeed, the first condition is clear. For the second condition, since g has order $\phi\left(p^{2}\right)$ modulo p^{2}, we know that for any integer $d, 1 \leqslant d<\phi\left(p^{2}\right), g^{d} \neq 1\left(\bmod p^{2}\right)$. In particular, it holds for $d=p-1$.

