Solution 3.1. Examples of primitive roots.

- (1) Since the group \mathbb{Z}_{29}^* has $\phi(29) = 28$ elements, we need to show that 2 has order 28 modulo 29. All positive divisors of 28 are 1, 2, 4, 7, 14 and 28. Since the order of 2 must be a positive divisor of 28, it suffices to show that $2^k \not\equiv 1 \pmod{29}$ for k = 1, 2, 4, 7, 14. This can be done by direct computation. $2^1 \equiv 2 \pmod{29}$, $2^2 \equiv 4 \pmod{29}$, $2^4 \equiv 16 \pmod{29}$, $2^7 = 128 \equiv 12 \pmod{29}$, $2^{14} \equiv 12^2 = 144 \equiv 28 \equiv -1 \pmod{29}$. None of these remainders is 1 (mod 29), hence the order of 2 must be 28. In other words, 2 is a primitive root modulo 29. The number of generators of \mathbb{Z}_{29}^* is $\phi(28) = 28(1 \frac{1}{2})(1 \frac{1}{7}) = 12$.
- (2) By Remark 3.9, it suffices to show that 2 is a primitive root modulo 11 and the condition $2^{10} \neq 1 \pmod{11^2}$. To show 2 is a primitive root modulo 11, we need to show 2 has order 10 modulo 11. In other words, its order is not 1, 2 or 5. Indeed, $2^1 \equiv 2 \pmod{11}$, $2^2 \equiv 4 \pmod{11}$, $2^5 = 32 \equiv 10 \pmod{11}$. None of them is congruent to 1 modulo 29, hence 2 is a primitive root modulo 11. To show the second condition $2^{10} \neq 1 \pmod{11^2}$, we simply compute $2^{10} = 1024 \equiv 56 \neq 1 \pmod{121}$. Hence 2 is a primitive root modulo 11^3 . The number of generators in $\mathbb{Z}^*_{11^3}$ is given by $\phi(\phi(11^3)) = \phi(10 \times 11^2) = 440$.
- (3) We consider primitive roots modulo 10. We have φ(10) = 4 and we can even write down Z^{*}₁₀ = {1,3,7,9}. We show 3 is a primitive root (in other words 3 is a generator of Z^{*}₁₀). Indeed, 3 ≡ 3 (mod 10), 3² ≡ 9 (mod 10), so the order of 3 modulo 10 is not 1 or 2, hence must be 4. By Remark 3.2 (3), the generators of Z^{*}₁₀ are 3 and 3³ = 27 = 7. Hence a ∈ Z is a primitive root modulo 10 iff a ≡ 3 or 7 (mod 10).

We consider primitive roots modulo 11. We have found in part (2) that 2 is a primitive root modulo 11. By Remark 3.2 (3), we need to compute the congruence classes of 2^k modulo 11, where $1 \le k \le 10$ and hcf(k, 10) = 1; i.e., k = 1, 3, 7, 9. So we have $2^1 \equiv 2 \pmod{11}$, $2^3 \equiv 8 \pmod{11}$, $2^7 = 128 \equiv 7 \pmod{11}$, $2^9 \equiv 7 \times 4 \equiv 6 \pmod{11}$. Therefore $a \in \mathbb{Z}$ is a primitive root modulo 11 iff $a \equiv 2, 6, 7$ or 8 (mod 11).

We finally consider primitive roots modulo 12. We have the factorisation $12 = 2^2 \times 3$. We compare it with the list of forms in Theorem 3.10, but it does not match any of the given forms. Therefore there are no primitive roots modulo 12.

Solution 3.2. Applications in solving non-linear equations.

(1) Since g is a primitive root modulo p, we know that the order of g modulo p is $\phi(p) = p - 1$. In other words, $g^{p-1} \equiv 1 \pmod{p}$ and $g^l \not\equiv 1 \pmod{p}$ for any

 $1 \leq l < p-1$. Let $a = g^{\frac{p-1}{d}}$. We want to show a has order d. In other words, $a^d \equiv 1 \pmod{p}$ and $a^k \not\equiv 1 \pmod{p}$ for any $1 \leq k < d-1$.

On one hand, $a^d = g^{p-1} \equiv 1 \pmod{p}$. On the other hand, for any k with $1 \leq k < d$, $a^k \equiv g^{k \cdot \frac{p-1}{d}} \pmod{p}$. Since $0 < k \cdot \frac{p-1}{d} < p-1$, $a^k \not\equiv 1 \pmod{p}$. Therefore we conclude a has order d modulo p.

- (2) Let $b = g^{\frac{p-1}{2}}$. By part (1) we know *b* has order 2 modulo *p*. In other words, $b^2 \equiv 1 \pmod{p}$ and $b \not\equiv 1 \pmod{p}$. The first condition implies $p \mid (b^2-1) = (b+1)(b-1)$, hence either $p \mid b+1$ or $p \mid b-1$, or equivalently, $b \equiv -1 \pmod{p}$ or $b \equiv 1 \pmod{p}$. The second condition rules out the second possibility. Hence $g^{\frac{p-1}{2}} = b \equiv -1 \pmod{p}$ is the only possibility.
- (3) Let g = 2 be the primitive root modulo 29 found in Exercise 3.1 (1), then $g^{28} \equiv 1 \pmod{29}$. Therefore for any $k \in \mathbb{Z}$, $x \equiv g^{4k} \pmod{29}$ is a solution to the equation $x^7 \equiv 1 \pmod{29}$ because $(g^{4k})^7 = g^{28k} \equiv 1^k = 1 \pmod{29}$. In particular, the congruence classes of g^{4k} for $0 \leq k \leq 6$ are distinct solutions because g has order 28 modulo 29 (indeed, the congruence classes of g^l for $0 \leq l < 28 \mod{29}$ are all distinct). On the other hand, since \mathbb{Z}_{29} is a field by Proposition 2.9, the equation $x^7 = 1$ has at most 7 distinct solutions in \mathbb{Z}_{29} ; in other words, at most 7 distinct congruence classes. Therefore $x \equiv g^{4k} \pmod{29}$ for $0 \leq k \leq 6$ are all solutions. We do explicit computation: $2^0 \equiv 1 \pmod{29}$, $2^4 \equiv 16 \pmod{29}$, $2^8 \equiv 16^2 \equiv 24 \equiv -5 \pmod{29}$, $2^{12} = 2^42^8 \equiv 16 \times (-5) \equiv 7 \pmod{29}$, $2^{16} = (2^8)^2 \equiv (-5)^2 = 25 \equiv -4 \pmod{29}$, $2^{20} \equiv 2^42^{16} \equiv 16 \times (-4) \equiv 23 \equiv -6 \pmod{29}$, $2^{24} \equiv (2^{12})^2 \equiv 7^2 \equiv 20 \pmod{29}$. Therefore all solutions to the equation $x^7 \equiv 1 \pmod{29}$ are $x \equiv 1, 16, 24, 7, 25, 23$ or 20 (mod 29).

Solution 3.3. Applications in higher order residues.

- (1) For the "if" part, we assume $a \equiv g^{dk} \pmod{p}$. Then $x \equiv g^k \pmod{p}$ is clearly a solution to $x^d \equiv a \pmod{p}$. For the "only if" part, assume $x^d \equiv a \pmod{p}$ has a solution $x \equiv x_0 \pmod{p}$. Then $p \nmid x_0$ because $x_0^d \equiv a \pmod{p}$ and $p \nmid a$. Therefore \overline{x}_0 is an element in \mathbb{Z}_p^* hence $x_0 \equiv g^k \pmod{p}$ for some $k \in \mathbb{Z}$ (because \overline{g} is a generator of \mathbb{Z}_p^*). Therefore $a \equiv x_0^d \equiv g^{dk} \pmod{p}$.
- (2) By part (1), it suffices to show that $a \equiv g^{dk} \pmod{p}$ is equivalent to $a^{\frac{p-1}{d}} \equiv 1 \pmod{p}$. We first assume $a \equiv g^{dk} \pmod{p}$. Then $a^{\frac{p-1}{d}} \equiv (g^{dk})^{\frac{p-1}{d}} = g^{k(p-1)} \equiv 1 \pmod{p}$ since $g^{p-1} \equiv 1 \pmod{p}$. For the other direction, since $p \nmid a, \overline{a} \in \mathbb{Z}_p^*$. Hence $a \equiv g^l \pmod{p}$ for some $l \in \mathbb{Z}$. Then $a^{\frac{p-1}{d}} \equiv g^{l \cdot \frac{p-1}{d}} \equiv 1 \pmod{p}$. Since g has order p-1 modulo p, we conclude that $l \cdot \frac{p-1}{d}$ must be a multiple of p-1. (This uses a fact in group theory: assume an element g in a group G has order q, then $g^r = e$ is the identity of the group iff $q \mid r$.) In other words, there exists

some $k \in \mathbb{Z}$, such that $l \cdot \frac{p-1}{d} = k(p-1)$. This simplifies to l = dk, hence $a \equiv g^{dk} \pmod{p}$ for some $k \in \mathbb{Z}$.

(3) We use the result from part (1). $x^4 \equiv a \mod 29$ has solutions iff $a \equiv g^{4k} \pmod{29}$. We know from Exercise 3.1 (1) that g = 2 is a primitive root modulo 29. Therefore $a \equiv 2^{4k} \pmod{29}$ for $k \in \mathbb{Z}$. For $0 \leq k \leq 6$ the formula gives distinct congruence classes. Therefore $x^4 \equiv a \pmod{29}$ has solutions iff $a \equiv 2^{4k}$ for $0 \leq k \leq 6$. To find the corresponding values of a within the range 0 < a < 29, we need to find the remainder of each $2^{4k} \mod 29$. This calculation has been done in Exercise 3.3 (3); i.e. a = 1, 16, 24, 7, 25, 23 or 20.

Solution 3.4. Characterisation of primitive roots modulo higher powers of odd primes.

(1) Since $a \equiv b \pmod{p^l}$, we can write $a = b + c \cdot p^l$ for some $c \in \mathbb{Z}$. We then take *p*-th power on both sides and expand the right-hand side. We get

$$a^{p} = (b + c \cdot p^{l})^{p} = b^{p} + p \cdot b^{p-1} cp^{l} + \sum_{i=2}^{p} \binom{p}{i} b^{p-i} c^{i} p^{il}.$$

We claim that every term on the right-hand side except b^p is divisible by p^{l+1} . Indeed, the second term $p \cdot b^{p-1}cp^l$ is clearly divisible by p^{l+1} . For every term in the summation, the exponent in the power p^{il} is at least $il \ge 2l = l + l \ge l + 1$, hence p^{l+1} divides the term $\binom{p}{i}b^{p-i}c^ip^{il}$ for each $i \ge 2$. Therefore, modulo p^{l+1} , the above equation can be written as $a^p \equiv b^p \pmod{p^{l+1}}$.

- (2) We assume the order of g modulo p^m is d. We need to show $d = \phi(p^m)$. It suffices to prove that $d \mid \phi(p^m)$ and $\phi(p^m) \mid d$. For the first division, notice that $\mathbb{Z}_{p^m}^*$ has order $\phi(p^m)$, hence the order d of any element \overline{g} is a positive divisor of $\phi(p^m)$; that is $d \mid \phi(p^m)$. For the second division, we apply the statement in part (1) on the congruence $g^d \equiv 1 \pmod{p^m}$ for n - m times. Step by step we will get $g^{dp} \equiv 1 \pmod{p^{m+1}}, g^{dp^2} \equiv 1 \pmod{p^{m+2}}, \cdots, g^{dp^{n-m}} \equiv 1 \pmod{p^n}$. Since g has order $\phi(p^n) \mod p^n$, the last congruence implies $\phi(p^n) \mid dp^{n-m}$. (This uses again the fact in group theory: assume an element g in a group G has order q, then $g^r = e$ is the identity of the group iff $q \mid r$.) Hence $dp^{n-m} = c\phi(p^n) = c(p-1)p^{n-1}$ for some $c \in \mathbb{Z}$. It follows that $d = c(p-1)p^{m-1} = c\phi(p^m)$, hence $\phi(p^m) \mid d$ which is the second division. The two divisions guarantee $d = \phi(p^m)$.
- (3) The sufficiency is stated in Remark 3.9 and proved in Proposition 3.8. We still need to prove the necessity of the two given conditions. Since g is a primitive root modulo p^l , using the statement in part (2), we know g is a primitive root modulo p and p^2 because $l \ge 2$, which prove the two conditions respectively. Indeed, the first condition is clear. For the second condition, since g has order $\phi(p^2)$ modulo p^2 , we know that for any integer d, $1 \le d < \phi(p^2)$, $g^d \ne 1 \pmod{p^2}$. In particular, it holds for d = p 1.