Solutions to Exercise Sheet 4

Solution 4.1. Computation of the Legendre symbol.
(1) We factor 474 into primes as $474=2 \times 3 \times 79$. Hence $\left(\frac{474}{733}\right)=\left(\frac{2}{733}\right)\left(\frac{3}{733}\right)\left(\frac{79}{733}\right)$. We have $\left(\frac{2}{733}\right)=-1$ since $733 \equiv 5(\bmod 8)$. We use quadratic reciprocity to compute the other two factors. Notice that $733 \equiv 1(\bmod 4)$, therefore $\left(\frac{3}{733}\right)=\left(\frac{733}{3}\right)=$ $\left(\frac{1}{3}\right)=1$. For the same reason we have $\left(\frac{79}{733}\right)=\left(\frac{733}{79}\right)=\left(\frac{22}{79}\right)=\left(\frac{2}{79}\right)\left(\frac{11}{79}\right)$. Since $79 \equiv-1(\bmod 8)$ we have $\left(\frac{2}{79}\right)=1$. Since $11 \equiv 79 \equiv 3(\bmod 8)$, by quadratic reciprocity we get $\left(\frac{11}{79}\right)=-\left(\frac{79}{11}\right)=-\left(\frac{2}{11}\right)=1$, where the last equality is due to $11 \equiv 3(\bmod 8)$. Hence we have $\left(\frac{79}{733}\right)=1$. It follows that $\left(\frac{474}{733}\right)=(-1) \times 1 \times 1=$ -1 .
(2) The computation is always easier if we use Jacobi symbols. We just need to remember pulling out -1 and 2 from the numerators.

In this problem we have $\left(\frac{-113}{997}\right)=\left(\frac{-1}{997}\right)\left(\frac{113}{997}\right)$. The first factor $\left(\frac{-1}{997}\right)=1$ since $997 \equiv 1(\bmod 4)$. The second factor $\left(\frac{113}{997}\right)=\left(\frac{997}{113}\right)$ by quadratic reciprocity since $113 \equiv 1(\bmod 4)(\operatorname{or} 997 \equiv 1(\bmod 4))$. Then $\left(\frac{997}{113}\right)=\left(\frac{93}{113}\right)=\left(\frac{113}{93}\right)=\left(\frac{20}{93}\right)=$ $\left(\frac{4}{93}\right)\left(\frac{5}{93}\right)=\left(\frac{5}{93}\right)=\left(\frac{93}{5}\right)=\left(\frac{3}{5}\right)=\left(\frac{5}{3}\right)=\left(\frac{2}{3}\right)=-1$, where the second, sixth and eighth equalities are consequences of quadratic reciprocity since $113 \equiv 1(\bmod 4)$ and $5 \equiv 1(\bmod 4)$. Finally we conclude $\left(\frac{-113}{997}\right)=-1$.
(3) For this one we have $\left(\frac{514}{1093}\right)=\left(\frac{2}{1093}\right)\left(\frac{257}{1093}\right)$. Since $1093 \equiv 5(\bmod 8)$ we get $\left(\frac{2}{1093}\right)=$ -1 . Realising $257 \equiv 1(\bmod 4)$ and using quadratic reciprocity, we have $\left(\frac{257}{1093}\right)=$ $\left(\frac{1093}{257}\right)=\left(\frac{65}{257}\right)=\left(\frac{257}{65}\right)=\left(\frac{62}{65}\right)$. At this point we can of course factor 62 and do the computation as usual. But there is a shortcut. We write $\left(\frac{62}{65}\right)=\left(\frac{-3}{65}\right)=\left(\frac{-1}{65}\right)\left(\frac{3}{65}\right)$. Since $65 \equiv 1(\bmod 4)$, we have $\left(\frac{-1}{65}\right)=1$, and by quadratic reciprocity $\left(\frac{3}{65}\right)=$ $\left(\frac{65}{3}\right)=\left(\frac{2}{3}\right)=-1$. Finally we conclude that $\left(\frac{514}{1093}\right)=(-1) \times(-1)=1$.

Solution 4.2. Primes for which a given number is a quadratic residue.
(1) To find all the odd primes p for which 5 is a quadratic residue, we need to compute $\left(\frac{5}{p}\right)$ for any odd prime $p \neq 5$ (because p has to be coprime with 5 for being a quadratic residue). Since $5 \equiv 1(\bmod 4),\left(\frac{5}{p}\right)=\left(\frac{p}{5}\right)$. By direct computation we know that $\left(\frac{1}{5}\right)=\left(\frac{4}{5}\right)=1,\left(\frac{2}{5}\right)=-1$ and $\left(\frac{3}{5}\right)=\left(\frac{5}{3}\right)=\left(\frac{2}{3}\right)=-1$. Hence

$$
\left(\frac{5}{p}\right)=\left\{\begin{array}{llll}
1 & \text { if } & p \equiv 1 \text { or } 4 & (\bmod 5) \\
-1 & \text { if } & p \equiv 2 \text { or } 3 & (\bmod 5)
\end{array}\right.
$$

In other words, 5 is a quadratic residue modulo an odd prime p iff $p \equiv \pm 1(\bmod 5)$.
(2) Let p be an odd prime and $p \neq 3$ (because p has to be coprime with -3). We compute $\left(\frac{-3}{p}\right)$. We know $\left(\frac{-3}{p}\right)=\left(\frac{-1}{p}\right)\left(\frac{3}{p}\right)$. The first factor $\left(\frac{-1}{p}\right)=1$ if $p \equiv 1$ $(\bmod 4)$ and -1 if $p \equiv 3(\bmod 4)$. We apply quadratic reciprocity for the second
factor; i.e. $\left(\frac{3}{p}\right)=\left(\frac{p}{3}\right)$ if $p \equiv 1(\bmod 4)$ and $-\left(\frac{p}{3}\right)$ if $p \equiv 3(\bmod 4)$. No matter whether $p \equiv 1$ or $3(\bmod 4)$, we always have $\left(\frac{-3}{p}\right)=\left(\frac{p}{3}\right)$. Since $\left(\frac{1}{3}\right)=1$ and $\left(\frac{2}{3}\right)=-1$, we have

$$
\left(\frac{-3}{p}\right)=\left\{\begin{array}{llll}
1 & \text { if } & p \equiv 1 & (\bmod 3) \\
-1 & \text { if } & p \equiv 2 & (\bmod 3)
\end{array}\right.
$$

In other words, -3 is a quadratic residue modulo an odd prime p iff $p \equiv 1(\bmod 3)$.
Solution 4.3. Properties of Jacobi symbols.
(1) Let $b=p_{1} p_{2} \cdots p_{m}$ be its prime factorisation, where $p_{1}, p_{2}, \cdots, p_{m}$ are not necessarily distinct. Since a is a quadratic residue modulo b, there exists some integer $x \in \mathbb{Z}$, such that $x^{2} \equiv a(\bmod b)$. It follows that $x^{2} \equiv a\left(\bmod p_{i}\right)$ for each $i=1,2, \cdots, m$. Since $\operatorname{hcf}(a, b)=1$, we know $p_{i} \nmid a$, therefore a is a quadratic residue modulo p_{i} for each $i=1,2, \cdots, m$. By Definition $4.2,\left(\frac{a}{p_{i}}\right)=1$ for each i, hence by Definition 4.9, we have $\left(\frac{a}{b}\right)=\left(\frac{a}{p_{1}}\right)\left(\frac{a}{p_{2}}\right) \cdots\left(\frac{a}{p_{m}}\right)=1$.
(2) Let $b=p_{1} p_{2} \cdots p_{m}$ be its prime factorisation, where $p_{1}, p_{2}, \cdots, p_{m}$ are not necessarily distinct primes. By Definition 4.9 and Proposition 4.4 (2) we have

$$
\begin{aligned}
& \left(\frac{a_{1} a_{2}}{b}\right)=\left(\frac{a_{1} a_{2}}{p_{1}}\right) \cdots\left(\frac{a_{1} a_{2}}{p_{m}}\right)=\left(\frac{a_{1}}{p_{1}}\right)\left(\frac{a_{2}}{p_{1}}\right) \cdots\left(\frac{a_{1}}{p_{m}}\right)\left(\frac{a_{2}}{p_{m}}\right) \\
& \left(\frac{a_{1}}{b}\right)\left(\frac{a_{2}}{b}\right)=\left(\frac{a_{1}}{p_{1}}\right) \cdots\left(\frac{a_{1}}{p_{m}}\right) \cdot\left(\frac{a_{2}}{p_{1}}\right) \cdots\left(\frac{a_{2}}{p_{m}}\right) .
\end{aligned}
$$

The right-hand sides of the above two equations are products of the same factors (although in different orders), Hence they are equal. It follows that the left-hand sides of these two equations are also equal.

Solution 4.4. Quadratic residues and the Legendre symbol.
(1) We do it in the most naive way. We could try to compute the square of all integers from 1 to 12 to get all quadratic residues modulo 13. In fact we only need to compute the first six of them, because for every $k \in \mathbb{Z}, 1 \leqslant k \leqslant 6$, we have $13-k \equiv-k(\bmod 13)$, hence $(13-k)^{2} \equiv k^{2}(\bmod 13)$. In other words, the square of any integer between 7 and 12 would not produce any new congruence class. The squares of $1,2,3,4,5,6$ are $1,4,9,16,25,36$, which reduce to $1,4,9,3,12,10$ modulo 13. So a is a quadratic residue modulo 13 iff $a \equiv 1,3,4,9,10$ or $12(\bmod 13)$, and a quadratic non-residue modulo 13 iff $a \equiv 2,5,6,7,8$ or $11(\bmod 13)$.
(2) Recall that a solution to such a congruence equation is a congruence class modulo p. There are three cases. If $p \mid a$, then the congruence equation becomes $x^{2} \equiv 0$ $(\bmod p)$. It follows that $p \mid x$ and $x \equiv 0(\bmod p)$ is the only solution to the equation. In this case we do have $\left(\frac{a}{p}\right)+1=1$ which is the number of solutions.

If a is a quadratic residue modulo p, then there exists some $x_{0} \in \mathbb{Z}$ such that $x_{0}^{2} \equiv$ $a(\bmod p)$. Since $p \nmid a$, we also have $p \nmid x_{0}$. We claim that the congruence $x^{2} \equiv a$ $(\bmod p)$ has two solutions, which are given by $x \equiv x_{0}(\bmod p)$ and $x \equiv-x_{0}$ $(\bmod p)$. Obviously both are solutions to the congruence equation. They must be distinct. Indeed, if they were the same solution, then $x_{0} \equiv-x_{0}(\bmod p)$, hence $2 x_{0} \equiv 0(\bmod p)$. Since p is an odd prime, this implies $p \mid x_{0}$. Contradiction. Therefore we have found two solutions to the congruence equation $x^{2} \equiv a(\bmod p)$. We can interpret this congruence as an equation $x^{2}=\bar{a}$ in \mathbb{Z}_{p}. Since \mathbb{Z}_{p} is a field by Proposition 2.9, this equation has at most two solutions by Lemma 3.3. Hence we have found all solutions. In this case, $\left(\frac{a}{p}\right)+1=2$ which is indeed the number of solutions.

If a is a quadratic non-residue modulo p, then there is no solution to the congruence $x^{2} \equiv a(\bmod p)$. And we do have $\left(\frac{a}{p}\right)+1=0$ in this case. We proved our result in all three possible cases.
(3) We consider the congruence equations $x^{2} \equiv a(\bmod p)$ for $a=0,1, \cdots, p-1$. There are p equations in total. The sum of numbers of solutions to these p equations is given by $\sum_{a=0}^{p-1}\left(\left(\frac{a}{p}\right)+1\right)$.

On the other hand, every congruence class modulo p is precisely a solution to one of these equations. (In other words, for every $0 \leqslant x_{0} \leqslant p-1$, the congruence class $x \equiv x_{0}(\bmod p)$ is a solution to the unique congruence equation $x^{2} \equiv a$ $(\bmod p)$ for a being the residue of x_{0}^{2} modulo p.) Therefore the sum of numbers of solutions to all p congruence equations is p.

It follows that $\sum_{a=0}^{p-1}\left(\left(\frac{a}{p}\right)+1\right)=p$. The left-hand side is $\sum_{a=0}^{p-1}\left(\frac{a}{p}\right)+p$, hence we conclude that $\sum_{a=0}^{p-1}\left(\frac{a}{p}\right)=0$.
(4) We look at the left-hand side of the equation $\sum_{a=0}^{p-1}\left(\frac{a}{p}\right)=0$. For $a=0$, we have $\left(\frac{a}{p}\right)=0$. For all other values of $a,\left(\frac{a}{p}\right)= \pm 1$. Since they add up to 0 , there should be the same number of 1 's and -1 's. In other words, in the set $\{1,2, \cdots, p-1\}$, there are the same number of quadratic residues and non-residues.

The answer to part (1) is consistent with this conclusion, because among all positive integers less than 13 , we found 6 quadratic residues modulo 13 and 6 quadratic non-residues.

