
Solutions to Exercise Sheet 4

Solution 4.1. Computation of the Legendre symbol.

(1) We factor 474 into primes as 474 � 2� 3� 79. Hence p 474
733

q � p 2
733
qp 3

733
qp 79

733
q. We

have p 2
733
q � �1 since 733 � 5 pmod 8q. We use quadratic reciprocity to compute

the other two factors. Notice that 733 � 1 pmod 4q, therefore p 3
733
q � p 733

3
q �

p 1
3
q � 1. For the same reason we have p 79

733
q � p 733

79
q � p 22

79
q � p 2

79
qp 11

79
q. Since

79 � �1 pmod 8q we have p 2
79
q � 1. Since 11 � 79 � 3 pmod 8q, by quadratic

reciprocity we get p 11
79
q � �p 79

11
q � �p 2

11
q � 1, where the last equality is due to

11 � 3 pmod 8q. Hence we have p 79
733
q � 1. It follows that p 474

733
q � p�1q � 1� 1 �

�1.

(2) The computation is always easier if we use Jacobi symbols. We just need to

remember pulling out �1 and 2 from the numerators.

In this problem we have p �113
997

q � p �1
997
qp 113

997
q. The first factor p �1

997
q � 1 since

997 � 1 pmod 4q. The second factor p 113
997

q � p 997
113

q by quadratic reciprocity since

113 � 1 pmod 4q (or 997 � 1 pmod 4q). Then p 997
113

q � p 93
113
q � p 113

93
q � p 20

93
q �

p 4
93
qp 5

93
q � p 5

93
q � p 93

5
q � p 3

5
q � p 5

3
q � p 2

3
q � �1, where the second, sixth and

eighth equalities are consequences of quadratic reciprocity since 113 � 1 pmod 4q
and 5 � 1 pmod 4q. Finally we conclude p �113

997
q � �1.

(3) For this one we have p 514
1093

q � p 2
1093

qp 257
1093

q. Since 1093 � 5 pmod 8q we get p 2
1093

q �
�1. Realising 257 � 1 pmod 4q and using quadratic reciprocity, we have p 257

1093
q �

p 1093
257

q � p 65
257
q � p 257

65
q � p 62

65
q. At this point we can of course factor 62 and do the

computation as usual. But there is a shortcut. We write p 62
65
q � p �3

65
q � p �1

65
qp 3

65
q.

Since 65 � 1 pmod 4q, we have p �1
65
q � 1, and by quadratic reciprocity p 3

65
q �

p 65
3
q � p 2

3
q � �1. Finally we conclude that p 514

1093
q � p�1q � p�1q � 1.

Solution 4.2. Primes for which a given number is a quadratic residue.

(1) To find all the odd primes p for which 5 is a quadratic residue, we need to compute

p 5
p
q for any odd prime p � 5 (because p has to be coprime with 5 for being a

quadratic residue). Since 5 � 1 pmod 4q, p 5
p
q � p p

5
q. By direct computation we

know that p 1
5
q � p 4

5
q � 1, p 2

5
q � �1 and p 3

5
q � p 5

3
q � p 2

3
q � �1. Hence

� 5

p

	
�
#

1 if p � 1 or 4 pmod 5q
�1 if p � 2 or 3 pmod 5q.

In other words, 5 is a quadratic residue modulo an odd prime p iff p � �1 pmod 5q.
(2) Let p be an odd prime and p � 3 (because p has to be coprime with �3). We

compute p �3
p
q. We know p �3

p
q � p �1

p
qp 3

p
q. The first factor p �1

p
q � 1 if p � 1

pmod 4q and �1 if p � 3 pmod 4q. We apply quadratic reciprocity for the second
47



factor; i.e. p 3
p
q � p p

3
q if p � 1 pmod 4q and �p p

3
q if p � 3 pmod 4q. No matter

whether p � 1 or 3 pmod 4q, we always have p �3
p
q � p p

3
q. Since p 1

3
q � 1 and

p 2
3
q � �1, we have

� �3

p

	
�
#

1 if p � 1 pmod 3q
�1 if p � 2 pmod 3q.

In other words, �3 is a quadratic residue modulo an odd prime p iff p � 1 pmod 3q.
Solution 4.3. Properties of Jacobi symbols.

(1) Let b � p1p2 � � � pm be its prime factorisation, where p1, p2, � � � , pm are not neces-

sarily distinct. Since a is a quadratic residue modulo b, there exists some integer

x P Z, such that x2 � a pmod bq. It follows that x2 � a pmod piq for each

i � 1, 2, � � � ,m. Since hcfpa, bq � 1, we know pi � a, therefore a is a quadratic

residue modulo pi for each i � 1, 2, � � � ,m. By Definition 4.2, p a
pi
q � 1 for each i,

hence by Definition 4.9, we have p a
b
q � p a

p1
qp a
p2
q � � � p a

pm
q � 1.

(2) Let b � p1p2 � � � pm be its prime factorisation, where p1, p2, � � � , pm are not neces-

sarily distinct primes. By Definition 4.9 and Proposition 4.4 (2) we have� a1a2

b

	
�
� a1a2

p1

	
� � �

� a1a2

pm

	
�
� a1

p1

	� a2

p1

	
� � �

� a1

pm

	� a2

pm

	
� a1

b

	� a2

b

	
�
� a1

p1

	
� � �

� a1

pm

	
�
� a2

p1

	
� � �

� a2

pm

	
.

The right-hand sides of the above two equations are products of the same factors

(although in different orders), Hence they are equal. It follows that the left-hand

sides of these two equations are also equal.

Solution 4.4. Quadratic residues and the Legendre symbol.

(1) We do it in the most naive way. We could try to compute the square of all

integers from 1 to 12 to get all quadratic residues modulo 13. In fact we only need

to compute the first six of them, because for every k P Z, 1 ¤ k ¤ 6, we have

13�k � �k pmod 13q, hence p13�kq2 � k2 pmod 13q. In other words, the square

of any integer between 7 and 12 would not produce any new congruence class. The

squares of 1, 2, 3, 4, 5, 6 are 1, 4, 9, 16, 25, 36, which reduce to 1, 4, 9, 3, 12, 10 modulo

13. So a is a quadratic residue modulo 13 iff a � 1, 3, 4, 9, 10 or 12 pmod 13q, and

a quadratic non-residue modulo 13 iff a � 2, 5, 6, 7, 8 or 11 pmod 13q.
(2) Recall that a solution to such a congruence equation is a congruence class modulo

p. There are three cases. If p � a, then the congruence equation becomes x2 � 0

pmod pq. It follows that p � x and x � 0 pmod pq is the only solution to the

equation. In this case we do have p a
p
q � 1 � 1 which is the number of solutions.
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If a is a quadratic residue modulo p, then there exists some x0 P Z such that x2
0 �

a pmod pq. Since p � a, we also have p � x0. We claim that the congruence x2 � a

pmod pq has two solutions, which are given by x � x0 pmod pq and x � �x0

pmod pq. Obviously both are solutions to the congruence equation. They must be

distinct. Indeed, if they were the same solution, then x0 � �x0 pmod pq, hence

2x0 � 0 pmod pq. Since p is an odd prime, this implies p � x0. Contradiction.

Therefore we have found two solutions to the congruence equation x2 � a pmod pq.
We can interpret this congruence as an equation x2 � a in Zp. Since Zp is a field

by Proposition 2.9, this equation has at most two solutions by Lemma 3.3. Hence

we have found all solutions. In this case, p a
p
q � 1 � 2 which is indeed the number

of solutions.

If a is a quadratic non-residue modulo p, then there is no solution to the con-

gruence x2 � a pmod pq. And we do have p a
p
q � 1 � 0 in this case. We proved

our result in all three possible cases.

(3) We consider the congruence equations x2 � a pmod pq for a � 0, 1, � � � , p � 1.

There are p equations in total. The sum of numbers of solutions to these p equa-

tions is given by
°p�1
a�0pp ap q � 1q.

On the other hand, every congruence class modulo p is precisely a solution to

one of these equations. (In other words, for every 0 ¤ x0 ¤ p� 1, the congruence

class x � x0 pmod pq is a solution to the unique congruence equation x2 � a

pmod pq for a being the residue of x2
0 modulo p.) Therefore the sum of numbers

of solutions to all p congruence equations is p.

It follows that
°p�1
a�0pp ap q � 1q � p. The left-hand side is

°p�1
a�0p ap q � p, hence we

conclude that
°p�1
a�0p ap q � 0.

(4) We look at the left-hand side of the equation
°p�1
a�0p ap q � 0. For a � 0, we have

p a
p
q � 0. For all other values of a, p a

p
q � �1. Since they add up to 0, there should

be the same number of 1’s and �1’s. In other words, in the set t1, 2, � � � , p � 1u,
there are the same number of quadratic residues and non-residues.

The answer to part (1) is consistent with this conclusion, because among all

positive integers less than 13, we found 6 quadratic residues modulo 13 and 6

quadratic non-residues.
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