
Solutions to Exercise Sheet 5

Solution 5.1. Evaluating Legendre symbols by Gauss’ lemma.


 For p 5
7
q, since p � 7 and r � 3, we need to consider the least residues of 5, 10

and 15, which are �2, 3 and 1. There is only one negative least residue, hence

p 5
7
q � �1.

For p 3
11
q, since p � 11 and r � 5, we consider the least residues of 3, 6, 9, 12

and 15, which are 3, �5, �2, 1 and 4. There are two negative least residues, hence

p 3
11
q � 1.

For p 6
13
q, since p � 13 and r � 6, we consider the least residue of 6, 12, 18, 24,

30 and 36, which are 6, �1, 5, �2, 4 and �3. There are three negative ones, hence

p 6
13
q � �1.


 We consider p �1
p
q. Let r � p�1

2
. We need to look at the least residues of

�1,�2, � � � ,�r. But they are already least residues themselves. Since there are r

of them, by Gauss’ Lemma, we get p �1
p
q � p�1qr � p�1q p�1

2 .

Now we consider p 2
p
q. Let r � p�1

2
. We look at the least residues of 2, 4, � � � , 2r.

We deal with four cases p � 1, 3, 5 or 7 pmod 8q separately. If p � 1 pmod 8q,
then we can assume p � 8m � 1 for some m ¥ 0, and r � 4m. The number 2k

has positive least residue for 1 ¤ k ¤ 2m and negative least residue for 2m� 1 ¤
k ¤ 4m. Hence by Gauss’ Lemma, p 2

p
q � p�1q2m � 1. If p � 3 pmod 8q,

then we write p � 8m � 3, and r � 4m � 1. The number 2k has positive least

residue for 1 ¤ k ¤ 2m and negative least residue for 2m � 1 ¤ k ¤ 4m � 1.

Hence p 2
p
q � p�1q2m�1 � �1. If p � 5 pmod 8q, then we write p � 8m � 5 and

r � 4m � 2. The number 2k has positive least residue for 1 ¤ k ¤ 2m � 1 and

negative least residue for 2m � 2 ¤ k ¤ 4m � 2, hence p 2
p
q � p�1q2m�1 � �1.

If p � 7 pmod 8q, then we write p � 8m � 7 and r � 4m � 3. The number

2k has positive least residue for 1 ¤ k ¤ 2m � 1 and negative least residue for

2m� 2 ¤ k ¤ 4m� 3, hence p 2
p
q � p�1q2m�2 � 1. In summary, we have p 2

p
q � 1

if p � 1 or 7 pmod 8q and �1 if p � 3 or 5 pmod 8q.

 Since a � �1, for any 1 ¤ l ¤ p�1

2
, �1   la

p
  0, hence r la

p
s � �1. Then

t � ° p�1
2

l�1 r lap s �
° p�1

2
l�1 �1 � �p�1

2
. By Lemma 5.2, p �1

p
q � p�1qt � p�1q� p�1

2 �
p�1q p�1

2 , where the last equality is due to the fact that n and �n always have the

same parity (both odd or both even) for any integer n. Or equivalently, p �1
p
q � 1

if p � 1 pmod 4q and �1 if p � �1 pmod 4q.
Solution 5.2. Special cases of Dirichlet’s theorem.

(1) Assume there are only finitely many primes congruent to �1 modulo 6, say, S �
tp1, p2, � � � , pnu. Then we consider N � 6p1p2 � � � pn�1 ¡ 1. It is clear that pi � N
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for each pi P S, hence p R S for each prime factor p of N . It follows that p � 5

pmod 6q. Moreover, p must be odd since N is odd, so p � 0, 2 or 4 pmod 6q.
Furthermore, the only prime congruent to 3 modulo 6 is 3. However 3 � N , hence

p � 3 pmod 6q. Therefore the only possibility is p � 1 pmod 6q. It follows that

N is a product of primes congruent to 1 modulo 6, hence N � 1 pmod 6q, which

contradicts the formula of N , from which we can see N � 5 pmod 6q. It follows

that there are infinitely many primes congruent to �1 modulo 6.

(2) Assume there are only finitely many primes congruent to �1 modulo 8, say, T �
tq1, q2, � � � , qmu. Then we consider M � p4q1q2 � � � qmq2 � 2 ¡ 1. Since each qj P T
is an odd prime, qj � 2, hence qj �M . If follows that if q is an odd prime factor of

M , then q R T , hence q � �1 pmod 8q. On the other hand, q � M implies that 2

is a quadratic residue modulo q, hence q � 1 or �1 pmod 8q. It follows that q � 1

pmod 8q. In other words, every odd prime factor of M is congruent to 1 modulo 8.

If we write M � 2p8q2
1q

2
2 � � � q2

m � 1q, then the second factor 8q2
1q

2
2 � � � q2

m � 1 must

be a product of primes congruent to 1 modulo 8, which is itself congruent to 1

modulo 8. Contradiction. This contradiction shows that there are infinitely many

primes congruent to �1 modulo 8.

Solution 5.3. Quadratic residues for powers of odd primes.

(1) Since a is a quadratic residue modulo pe�1, there exists some x P Z, such that

x2 � a pmod pe�1q. Equivalently, x2�a is a multiple of pe�1, which implies x2�a
is a multiple of pe. Or equivalently, x2 � a pmod peq. Since p � a, we have

hcfpa, peq � 1. We conclude that a is a quadratic residue modulo pe.

(2) Since a is a quadratic residue modulo pe, we have x2 � a pmod peq for some

x P Z. Equivalently, we can write x2 � a � bpe for some b P Z. Set y � x � cpe

for some c P Z, then we consider y2 � a. We have y2 � a � px � cpeq2 � a �
x2 � a� 2xcpe � c2p2e � pb� 2xcqpe � c2p2e.

Now we claim that we can choose c such that b� 2xc is a multiple of p. Indeed,

since p � a, we have p � x, hence hcfp2x, pq � 1. It follows by Proposition 2.5

that the congruence equation 2xz � �b pmod pq (think of it as an equation of

z) has a solution for z. Let z � c be such a solution, then 2xc � b is a multiple

of p, hence pb � 2xcqpe is a multiple of pe�1. On the other hand c2p2e is also a

multiple of pe�1 because 2e ¥ e� 1. It follows that y2 � a is a multiple of pe�1, or

equivalently, y2 � a pmod pe�1q. Since p � a, we have hcfpa, pe�1q � 1. Therefore

a is a quadratic residue modulo pe�1.

(3) By parts (1) and (2), a is a quadratic residue modulo pe iff a is a quadratic residue

modulo pe�1. Using this result inductively, we can conclude that a is a quadratic
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residue modulo pe for any positive integer e iff p is a quadratic residue modulo p,

which is equivalent to p a
p
q � 1.

Solution 5.4. Fermat’s two-square problem.

(1) Since p � 1 pmod 4q, �1 is a quadratic residue modulo p. In other words, x2 � �1

pmod pq has a solution. Let x � s be one such solution, then s2 � 1 is a multiple

of p. We can then write s2 � 1 � pt, where s, t P Z. It follows that p divides

s2 � 1 � ps � iqps � iq in Zris. If p could divide s � i in Zris, then we can write

s� i � ppx�yiq for some x, y P Z. It follows that py � 1. Contradiction. Therfore

p does not divide s� i. Similar one can show that p does not divide s� i. Hence

p is not a prime, because p divides the product of s � i and s � i but neither of

the factors.

(2) We know from Exercise 1.4 (2) that Zris is a Euclidean domain, hence a PID.

By Proposition 1.9 (2), every irreducible element in Zris is a prime. By part (1),

p is not a prime in Zris hence is not irreducible. It follows that we can write

p � αβ, such that α and β are non-units. We apply Exercise 1.4 (1) and get

νppq � νpαqνpβq. By the formula of the valuation ν, the left-hand side is p2. By

Exercise 1.4 (4), neither of the factor on the right-hand side is 1. Therefore the

only possibility is νpαq � νpβq � p. Let α � a � bi for some a, b P Z. Then

νpαq � a2 � b2 � p.

(3) We show that a2 � 0 or 1 pmod 4q for every a P Z. Indeed, if a is even, say a � 2k

for some k P Z, then a2 � 4k2 � 0 pmod 4q. If a is odd, say a � 2k � 1 for some

k P Z, then a2 � p2k � 1q2 � 4k2 � 4k � 1 � 1 pmod 4q. The same is true for b2.

We consider all the combinations and conclude that a2�b2 � 0 or 1 or 2 pmod 4q.
By assumption p � 3 pmod 4q, hence p � a2 � b2 is never possible.
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