Solutions to Exercise Sheet 5

Solution 5.1. Evaluating Legendre symbols by Gauss' lemma.

• For $(\frac{5}{7})$, since p = 7 and r = 3, we need to consider the least residues of 5, 10 and 15, which are -2, 3 and 1. There is only one negative least residue, hence $(\frac{5}{7}) = -1$.

For $(\frac{3}{11})$, since p = 11 and r = 5, we consider the least residues of 3, 6, 9, 12 and 15, which are 3, -5, -2, 1 and 4. There are two negative least residues, hence $(\frac{3}{11}) = 1$.

For $\left(\frac{6}{13}\right)$, since p = 13 and r = 6, we consider the least residue of 6, 12, 18, 24, 30 and 36, which are 6, -1, 5, -2, 4 and -3. There are three negative ones, hence $\left(\frac{6}{13}\right) = -1$.

• We consider $\left(\frac{-1}{p}\right)$. Let $r = \frac{p-1}{2}$. We need to look at the least residues of $-1, -2, \cdots, -r$. But they are already least residues themselves. Since there are r of them, by Gauss' Lemma, we get $\left(\frac{-1}{p}\right) = (-1)^r = (-1)^{\frac{p-1}{2}}$.

Now we consider $(\frac{2}{p})$. Let $r = \frac{p-1}{2}$. We look at the least residues of $2, 4, \dots, 2r$. We deal with four cases $p \equiv 1, 3, 5$ or 7 (mod 8) separately. If $p \equiv 1 \pmod{8}$, then we can assume $p \equiv 8m + 1$ for some $m \ge 0$, and r = 4m. The number 2k has positive least residue for $1 \le k \le 2m$ and negative least residue for $2m + 1 \le k \le 4m$. Hence by Gauss' Lemma, $(\frac{2}{p}) = (-1)^{2m} = 1$. If $p \equiv 3 \pmod{8}$, then we write p = 8m + 3, and r = 4m + 1. The number 2k has positive least residue for $1 \le k \le 2m$ and negative least residue for $2m + 1 \le k \le 4m + 1$. Hence $(\frac{2}{p}) = (-1)^{2m+1} = -1$. If $p \equiv 5 \pmod{8}$, then we write p = 8m + 5 and r = 4m + 2. The number 2k has positive least residue for $1 \le k \le 2m + 1$ and negative least residue for $2m + 2 \le k \le 4m + 2$, hence $(\frac{2}{p}) = (-1)^{2m+1} = -1$. If $p \equiv 7 \pmod{8}$, then we write p = 8m + 7 and r = 4m + 3. The number 2k has positive least residue for $1 \le k \le 2m + 1$ and negative least residue for $1 \le k \le 2m + 1$ and negative least residue for $1 \le k \le 2m + 1$ and negative least residue for $2m + 2 \le k \le 4m + 2$, hence $(\frac{2}{p}) = (-1)^{2m+1} = -1$. If $p \equiv 7 \pmod{8}$, then we write p = 8m + 7 and r = 4m + 3. The number 2k has positive least residue for $1 \le k \le 2m + 1$ and negative least residue for $1 \le k \le 2m + 1$ and negative least residue for $1 \le k \le 2m + 1$ and negative least residue for $1 \le k \le 2m + 1$ and negative least residue for $1 \le k \le 2m + 1$ and negative least residue for $1 \le k \le 2m + 1$ and negative least residue for $1 \le k \le 2m + 1$ and negative least residue for $1 \le k \le 2m + 1$ and negative least residue for $1 \le k \le 2m + 1$ and negative least residue for $1 \le k \le 2m + 1$ and negative least residue for $2m + 2 \le k \le 4m + 3$, hence $(\frac{2}{p}) = (-1)^{2m+2} = 1$. In summary, we have $(\frac{2}{p}) = 1$ if $p \equiv 1$ or 7 (mod 8) and -1 if $p \equiv 3$ or 5 (mod 8).

• Since a = -1, for any $1 \le l \le \frac{p-1}{2}$, $-1 < \frac{la}{p} < 0$, hence $\left[\frac{la}{p}\right] = -1$. Then $t = \sum_{l=1}^{\frac{p-1}{2}} \left[\frac{la}{p}\right] = \sum_{l=1}^{\frac{p-1}{2}} -1 = -\frac{p-1}{2}$. By Lemma 5.2, $\left(\frac{-1}{p}\right) = (-1)^t = (-1)^{-\frac{p-1}{2}} = (-1)^{\frac{p-1}{2}}$, where the last equality is due to the fact that n and -n always have the same parity (both odd or both even) for any integer n. Or equivalently, $\left(\frac{-1}{p}\right) = 1$ if $p \equiv 1 \pmod{4}$ and -1 if $p \equiv -1 \pmod{4}$.

Solution 5.2. Special cases of Dirichlet's theorem.

(1) Assume there are only finitely many primes congruent to -1 modulo 6, say, $S = \{p_1, p_2, \dots, p_n\}$. Then we consider $N = 6p_1p_2\cdots p_n - 1 > 1$. It is clear that $p_i \notin N$

for each $p_i \in S$, hence $p \notin S$ for each prime factor p of N. It follows that $p \neq 5 \pmod{6}$. Moreover, p must be odd since N is odd, so $p \neq 0, 2$ or $4 \pmod{6}$. Furthermore, the only prime congruent to 3 modulo 6 is 3. However $3 \nmid N$, hence $p \neq 3 \pmod{6}$. Therefore the only possibility is $p \equiv 1 \pmod{6}$. It follows that N is a product of primes congruent to 1 modulo 6, hence $N \equiv 1 \pmod{6}$, which contradicts the formula of N, from which we can see $N \equiv 5 \pmod{6}$. It follows that there are infinitely many primes congruent to $-1 \mod{6}$.

(2) Assume there are only finitely many primes congruent to -1 modulo 8, say, T = {q₁, q₂, ..., q_m}. Then we consider M = (4q₁q₂...q_m)² - 2 > 1. Since each q_j ∈ T is an odd prime, q_j ∤ 2, hence q_j ∤ M. If follows that if q is an odd prime factor of M, then q ∉ T, hence q ≠ -1 (mod 8). On the other hand, q | M implies that 2 is a quadratic residue modulo q, hence q ≡ 1 or -1 (mod 8). It follows that q ≡ 1 (mod 8). In other words, every odd prime factor of M is congruent to 1 modulo 8. If we write M = 2(8q₁²q₂²...q_m² - 1), then the second factor 8q₁²q₂²...q_m² - 1 must be a product of primes congruent to 1 modulo 8, which is itself congruent to 1 modulo 8. Contradiction. This contradiction shows that there are infinitely many primes congruent to -1 modulo 8.

Solution 5.3. Quadratic residues for powers of odd primes.

- (1) Since a is a quadratic residue modulo p^{e+1} , there exists some $x \in \mathbb{Z}$, such that $x^2 \equiv a \pmod{p^{e+1}}$. Equivalently, $x^2 a$ is a multiple of p^{e+1} , which implies $x^2 a$ is a multiple of p^e . Or equivalently, $x^2 \equiv a \pmod{p^e}$. Since $p \nmid a$, we have $\operatorname{hcf}(a, p^e) = 1$. We conclude that a is a quadratic residue modulo p^e .
- (2) Since a is a quadratic residue modulo p^e , we have $x^2 \equiv a \pmod{p^e}$ for some $x \in \mathbb{Z}$. Equivalently, we can write $x^2 = a + bp^e$ for some $b \in \mathbb{Z}$. Set $y = x + cp^e$ for some $c \in \mathbb{Z}$, then we consider $y^2 a$. We have $y^2 a = (x + cp^e)^2 a = x^2 a + 2xcp^e + c^2p^{2e} = (b + 2xc)p^e + c^2p^{2e}$.

Now we claim that we can choose c such that b + 2xc is a multiple of p. Indeed, since $p \not\mid a$, we have $p \not\mid x$, hence hcf(2x, p) = 1. It follows by Proposition 2.5 that the congruence equation $2xz \equiv -b \pmod{p}$ (think of it as an equation of z) has a solution for z. Let z = c be such a solution, then 2xc + b is a multiple of p, hence $(b + 2xc)p^e$ is a multiple of p^{e+1} . On the other hand c^2p^{2e} is also a multiple of p^{e+1} because $2e \ge e + 1$. It follows that $y^2 - a$ is a multiple of p^{e+1} , or equivalently, $y^2 \equiv a \pmod{p^{e+1}}$. Since $p \not\mid a$, we have $hcf(a, p^{e+1}) = 1$. Therefore a is a quadratic residue modulo p^{e+1} .

(3) By parts (1) and (2), a is a quadratic residue modulo p^e iff a is a quadratic residue modulo p^{e+1} . Using this result inductively, we can conclude that a is a quadratic

residue modulo p^e for any positive integer e iff p is a quadratic residue modulo p, which is equivalent to $\left(\frac{a}{p}\right) = 1$.

Solution 5.4. Fermat's two-square problem.

- (1) Since $p \equiv 1 \pmod{4}$, -1 is a quadratic residue modulo p. In other words, $x^2 \equiv -1 \pmod{p}$ has a solution. Let x = s be one such solution, then $s^2 + 1$ is a multiple of p. We can then write $s^2 + 1 = pt$, where $s, t \in \mathbb{Z}$. It follows that p divides $s^2 + 1 = (s + i)(s i)$ in $\mathbb{Z}[i]$. If p could divide s + i in $\mathbb{Z}[i]$, then we can write s + i = p(x + yi) for some $x, y \in \mathbb{Z}$. It follows that py = 1. Contradiction. Therfore p does not divide s + i. Similar one can show that p does not divide s i. Hence p is not a prime, because p divides the product of s + i and s i but neither of the factors.
- (2) We know from Exercise 1.4 (2) that $\mathbb{Z}[i]$ is a Euclidean domain, hence a PID. By Proposition 1.9 (2), every irreducible element in $\mathbb{Z}[i]$ is a prime. By part (1), p is not a prime in $\mathbb{Z}[i]$ hence is not irreducible. It follows that we can write $p = \alpha\beta$, such that α and β are non-units. We apply Exercise 1.4 (1) and get $\nu(p) = \nu(\alpha)\nu(\beta)$. By the formula of the valuation ν , the left-hand side is p^2 . By Exercise 1.4 (4), neither of the factor on the right-hand side is 1. Therefore the only possibility is $\nu(\alpha) = \nu(\beta) = p$. Let $\alpha = a + bi$ for some $a, b \in \mathbb{Z}$. Then $\nu(\alpha) = a^2 + b^2 = p$.
- (3) We show that $a^2 \equiv 0$ or 1 (mod 4) for every $a \in \mathbb{Z}$. Indeed, if a is even, say a = 2k for some $k \in \mathbb{Z}$, then $a^2 = 4k^2 \equiv 0 \pmod{4}$. If a is odd, say a = 2k + 1 for some $k \in \mathbb{Z}$, then $a^2 = (2k + 1)^2 = 4k^2 + 4k + 1 \equiv 1 \pmod{4}$. The same is true for b^2 . We consider all the combinations and conclude that $a^2 + b^2 \equiv 0$ or 1 or 2 (mod 4). By assumption $p \equiv 3 \pmod{4}$, hence $p = a^2 + b^2$ is never possible.