SOLUTIONS TO EXERCISE SHEET 5

Solution 5.1. Fwvaluating Legendre symbols by Gauss’ lemma.

e For (%), since p = 7 and r = 3, we need to consider the least residues of 5, 10

and 15, which are —2, 3 and 1. There is only one negative least residue, hence

(3)=-1
For (%), since p = 11 and r = 5, we consider the least residues of 3, 6, 9, 12

and 15, which are 3, —5, —2, 1 and 4. There are two negative least residues, hence
(&) =1

For (1%), since p = 13 and r = 6, we consider the least residue of 6, 12, 18, 24,
30 and 36, which are 6, —1, 5, —2, 4 and —3. There are three negative ones, hence
(13) = -1

e We consider (_71) Let r = ”T_l. We need to look at the least residues of
—1,—2,--- ,—r. But they are already least residues themselves. Since there are r
of them, by Gauss’ Lemma, we get (_Tl) =(-1) = (—1)1%1.

Now we consider (%) Let r = ]%1. We look at the least residues of 2,4, --- , 2r.
We deal with four cases p = 1,3,5 or 7 (mod 8) separately. If p = 1 (mod 8),
then we can assume p = 8m + 1 for some m > 0, and r = 4m. The number 2k
has positive least residue for 1 < k < 2m and negative least residue for 2m + 1 <
k < 4m. Hence by Gauss’ Lemma, (%) = (=1)*™ = 1. If p = 3 (mod 8),
then we write p = 8m + 3, and r = 4m + 1. The number 2k has positive least
residue for 1 < k£ < 2m and negative least residue for 2m + 1 < k < 4m + 1.
Hence (%) = (=11 = —1. If p =5 (mod 8), then we write p = 8m + 5 and
r = 4m + 2. The number 2k has positive least residue for 1 < k < 2m + 1 and
negative least residue for 2m +2 < k < 4m + 2, hence (2) = (=1)*"*! = —1L.
If p =7 (mod 8), then we write p = 8n + 7 and r = 4m + 3. The number
2k has positive least residue for 1 < k£ < 2m + 1 and negative least residue for
2m + 2 < k < 4m + 3, hence (%) = (—1)*™*2 = 1. In summary, we have (%) =1
ifp=1or7 (mod8) and —1if p=3 or5 (mod 8).

o Since @ = —1, forany 1 < I < &1, —1 < % < 0, hence [%] = —1. Then
p=1 p=1 B B e
t=>.2 [%] =>4 —1= —”Tl. By Lemma 5.2, (71) = (-t = (-7 =
(—1)%, where the last equality is due to the fact that n and —n always have the
same parity (both odd or both even) for any integer n. Or equivalently, (_Tl) =1

if p=1 (mod 4) and —1 if p=—1 (mod 4).

Solution 5.2. Special cases of Dirichlet’s theorem.

(1) Assume there are only finitely many primes congruent to —1 modulo 6, say, S =

{p1,p2, -+ ,pn}. Then we consider N = 6pips---p, —1 > 1. It is clear that p; } N
56



(2)

for each p; € S, hence p ¢ S for each prime factor p of N. It follows that p % 5
(mod 6). Moreover, p must be odd since N is odd, so p # 0,2 or 4 (mod 6).
Furthermore, the only prime congruent to 3 modulo 6 is 3. However 3 / N, hence
p # 3 (mod 6). Therefore the only possibility is p = 1 (mod 6). It follows that
N is a product of primes congruent to 1 modulo 6, hence N =1 (mod 6), which
contradicts the formula of N, from which we can see N =5 (mod 6). It follows
that there are infinitely many primes congruent to —1 modulo 6.

Assume there are only finitely many primes congruent to —1 modulo 8, say, T' =
{q1,92, "+ ,qm}. Then we consider M = (4q1q2 - ¢n)* — 2 > 1. Since each ¢; € T
is an odd prime, ¢; / 2, hence g; f M. If follows that if ¢ is an odd prime factor of
M, then g ¢ T, hence g # —1 (mod 8). On the other hand, ¢ | M implies that 2
is a quadratic residue modulo ¢, hence ¢ = 1 or —1 (mod 8). It follows that ¢ = 1
(mod 8). In other words, every odd prime factor of M is congruent to 1 modulo 8.
If we write M = 2(8¢%¢5 - -- g2, — 1), then the second factor 8¢iqs - - - ¢, — 1 must
be a product of primes congruent to 1 modulo 8, which is itself congruent to 1
modulo 8. Contradiction. This contradiction shows that there are infinitely many
primes congruent to —1 modulo 8.

Solution 5.3. Quadratic residues for powers of odd primes.

(1)

Since a is a quadratic residue modulo p®*!, there exists some x € Z, such that

2 e+1) e+1 2

r? = a (mod p*™). Equivalently, 2% — a is a multiple of p™, which implies 2% —a

is a multiple of p¢. Or equivalently, > = a (mod p°). Since p } a, we have
hef(a, p®) = 1. We conclude that a is a quadratic residue modulo p°.

Since a is a quadratic residue modulo p¢, we have 2 = a (mod p°) for some

x € Z. Equivalently, we can write 22 = a + bp® for some b € Z. Set y = x + cp°
for some ¢ € Z, then we consider y?> —a. We have y?> —a = (z + ¢p®)* —a =
2?2 — a + 2xep® + ?p* = (b + 2xc)p° + Ap*.

Now we claim that we can choose ¢ such that b+ 2xc is a multiple of p. Indeed,
since p | a, we have p / x, hence hef(2z,p) = 1. It follows by Proposition 2.5
that the congruence equation 2xz = —b (mod p) (think of it as an equation of
z) has a solution for z. Let z = ¢ be such a solution, then 2zc + b is a multiple

¢l On the other hand c%*p* is also a

e+1

of p, hence (b + 2xc)p® is a multiple of p

multiple of p°*! because 2e = e + 1. It follows that > — a is a multiple of p°*!, or

equivalently, y*> = a (mod p°™'). Since p / a, we have hcf(a, p™!) = 1. Therefore
a is a quadratic residue modulo p¢*+?.

By parts (1) and (2), a is a quadratic residue modulo p€ iff a is a quadratic residue

e+1

modulo p°T*. Using this result inductively, we can conclude that a is a quadratic
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residue modulo p® for any positive integer e iff p is a quadratic residue modulo p,
which is equivalent to (<) = 1.
Solution 5.4. Fermat’s two-square problem.

(1) Since p =1 (mod 4), —1 is a quadratic residue modulo p. In other words, z% = —1
(mod p) has a solution. Let z = s be one such solution, then s + 1 is a multiple
of p. We can then write s> + 1 = pt, where s,t € Z. It follows that p divides
s24+ 1= (s+1)(s—1)in Z[i]. If p could divide s + 7 in Z[i], then we can write
s+i = p(z+yi) for some z,y € Z. It follows that py = 1. Contradiction. Therfore
p does not divide s + ¢. Similar one can show that p does not divide s —i. Hence
p is not a prime, because p divides the product of s + ¢ and s — ¢ but neither of
the factors.

(2) We know from Exercise 1.4 (2) that Z|[i] is a Euclidean domain, hence a PID.
By Proposition 1.9 (2), every irreducible element in Z[i] is a prime. By part (1),
p is not a prime in Z[i] hence is not irreducible. It follows that we can write
p = af, such that a and  are non-units. We apply Exercise 1.4 (1) and get
v(p) = v(a)v(B). By the formula of the valuation v, the left-hand side is p*. By
Exercise 1.4 (4), neither of the factor on the right-hand side is 1. Therefore the
only possibility is v(a) = v(8) = p. Let a = a + bi for some a,b € Z. Then
v(a) =a® +b* = p.

(3) We show that a®> =0 or 1 (mod 4) for every a € Z. Indeed, if a is even, say a = 2k
for some k € Z, then a* = 4k* =0 (mod 4). If a is odd, say a = 2k + 1 for some
ke Z, then a®* = (2k + 1) = 4k* + 4k + 1 =1 (mod 4). The same is true for b*.
We consider all the combinations and conclude that a?+b* =0 or 1 or 2 (mod 4).
By assumption p = 3 (mod 4), hence p = a® + b? is never possible.
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