Solutions to Exercise Sheet 5

Solution 5.1. Evaluating Legendre symbols by Gauss' lemma.

- For $\left(\frac{5}{7}\right)$, since $p=7$ and $r=3$, we need to consider the least residues of 5,10 and 15 , which are $-2,3$ and 1 . There is only one negative least residue, hence $\left(\frac{5}{7}\right)=-1$.

For $\left(\frac{3}{11}\right)$, since $p=11$ and $r=5$, we consider the least residues of $3,6,9,12$ and 15 , which are $3,-5,-2,1$ and 4 . There are two negative least residues, hence $\left(\frac{3}{11}\right)=1$.

For $\left(\frac{6}{13}\right)$, since $p=13$ and $r=6$, we consider the least residue of $6,12,18,24$, 30 and 36 , which are $6,-1,5,-2,4$ and -3 . There are three negative ones, hence $\left(\frac{6}{13}\right)=-1$.

- We consider $\left(\frac{-1}{p}\right)$. Let $r=\frac{p-1}{2}$. We need to look at the least residues of $-1,-2, \cdots,-r$. But they are already least residues themselves. Since there are r of them, by Gauss' Lemma, we get $\left(\frac{-1}{p}\right)=(-1)^{r}=(-1)^{\frac{p-1}{2}}$.

Now we consider $\left(\frac{2}{p}\right)$. Let $r=\frac{p-1}{2}$. We look at the least residues of $2,4, \cdots, 2 r$. We deal with four cases $p \equiv 1,3,5$ or $7(\bmod 8)$ separately. If $p \equiv 1(\bmod 8)$, then we can assume $p=8 m+1$ for some $m \geqslant 0$, and $r=4 m$. The number $2 k$ has positive least residue for $1 \leqslant k \leqslant 2 m$ and negative least residue for $2 m+1 \leqslant$ $k \leqslant 4 m$. Hence by Gauss' Lemma, $\left(\frac{2}{p}\right)=(-1)^{2 m}=1$. If $p \equiv 3(\bmod 8)$, then we write $p=8 m+3$, and $r=4 m+1$. The number $2 k$ has positive least residue for $1 \leqslant k \leqslant 2 m$ and negative least residue for $2 m+1 \leqslant k \leqslant 4 m+1$. Hence $\left(\frac{2}{p}\right)=(-1)^{2 m+1}=-1$. If $p \equiv 5(\bmod 8)$, then we write $p=8 m+5$ and $r=4 m+2$. The number $2 k$ has positive least residue for $1 \leqslant k \leqslant 2 m+1$ and negative least residue for $2 m+2 \leqslant k \leqslant 4 m+2$, hence $\left(\frac{2}{p}\right)=(-1)^{2 m+1}=-1$. If $p \equiv 7(\bmod 8)$, then we write $p=8 m+7$ and $r=4 m+3$. The number $2 k$ has positive least residue for $1 \leqslant k \leqslant 2 m+1$ and negative least residue for $2 m+2 \leqslant k \leqslant 4 m+3$, hence $\left(\frac{2}{p}\right)=(-1)^{2 m+2}=1$. In summary, we have $\left(\frac{2}{p}\right)=1$ if $p \equiv 1$ or $7(\bmod 8)$ and -1 if $p \equiv 3$ or $5(\bmod 8)$.

- Since $a=-1$, for any $1 \leqslant l \leqslant \frac{p-1}{2},-1<\frac{l a}{p}<0$, hence $\left[\frac{l a}{p}\right]=-1$. Then $t=\sum_{l=1}^{\frac{p-1}{2}}\left[\frac{l a}{p}\right]=\sum_{l=1}^{\frac{p-1}{2}}-1=-\frac{p-1}{2}$. By Lemma 5.2, $\left(\frac{-1}{p}\right)=(-1)^{t}=(-1)^{-\frac{p-1}{2}}=$ $(-1)^{\frac{p-1}{2}}$, where the last equality is due to the fact that n and $-n$ always have the same parity (both odd or both even) for any integer n. Or equivalently, $\left(\frac{-1}{p}\right)=1$ if $p \equiv 1(\bmod 4)$ and -1 if $p \equiv-1(\bmod 4)$.

Solution 5.2. Special cases of Dirichlet's theorem.
(1) Assume there are only finitely many primes congruent to -1 modulo 6 , say, $S=$ $\left\{p_{1}, p_{2}, \cdots, p_{n}\right\}$. Then we consider $N=6 p_{1} p_{2} \cdots p_{n}-1>1$. It is clear that $p_{i} \nmid N$
for each $p_{i} \in S$, hence $p \notin S$ for each prime factor p of N. It follows that $p \not \equiv 5$ $(\bmod 6)$. Moreover, p must be odd since N is odd, so $p \not \equiv 0,2$ or $4(\bmod 6)$. Furthermore, the only prime congruent to 3 modulo 6 is 3 . However $3 \backslash N$, hence $p \not \equiv 3(\bmod 6)$. Therefore the only possibility is $p \equiv 1(\bmod 6)$. It follows that N is a product of primes congruent to 1 modulo 6 , hence $N \equiv 1(\bmod 6)$, which contradicts the formula of N, from which we can see $N \equiv 5(\bmod 6)$. It follows that there are infinitely many primes congruent to -1 modulo 6 .
(2) Assume there are only finitely many primes congruent to -1 modulo 8 , say, $T=$ $\left\{q_{1}, q_{2}, \cdots, q_{m}\right\}$. Then we consider $M=\left(4 q_{1} q_{2} \cdots q_{m}\right)^{2}-2>1$. Since each $q_{j} \in T$ is an odd prime, $q_{j} \nmid 2$, hence $q_{j} \nmid M$. If follows that if q is an odd prime factor of M, then $q \notin T$, hence $q \not \equiv-1(\bmod 8)$. On the other hand, $q \mid M$ implies that 2 is a quadratic residue modulo q, hence $q \equiv 1$ or $-1(\bmod 8)$. It follows that $q \equiv 1$ $(\bmod 8)$. In other words, every odd prime factor of M is congruent to 1 modulo 8. If we write $M=2\left(8 q_{1}^{2} q_{2}^{2} \cdots q_{m}^{2}-1\right)$, then the second factor $8 q_{1}^{2} q_{2}^{2} \cdots q_{m}^{2}-1$ must be a product of primes congruent to 1 modulo 8 , which is itself congruent to 1 modulo 8 . Contradiction. This contradiction shows that there are infinitely many primes congruent to -1 modulo 8 .

Solution 5.3. Quadratic residues for powers of odd primes.
(1) Since a is a quadratic residue modulo p^{e+1}, there exists some $x \in \mathbb{Z}$, such that $x^{2} \equiv a\left(\bmod p^{e+1}\right)$. Equivalently, $x^{2}-a$ is a multiple of p^{e+1}, which implies $x^{2}-a$ is a multiple of p^{e}. Or equivalently, $x^{2} \equiv a\left(\bmod p^{e}\right)$. Since $p \nmid a$, we have $\operatorname{hcf}\left(a, p^{e}\right)=1$. We conclude that a is a quadratic residue modulo p^{e}.
(2) Since a is a quadratic residue modulo p^{e}, we have $x^{2} \equiv a\left(\bmod p^{e}\right)$ for some $x \in \mathbb{Z}$. Equivalently, we can write $x^{2}=a+b p^{e}$ for some $b \in \mathbb{Z}$. Set $y=x+c p^{e}$ for some $c \in \mathbb{Z}$, then we consider $y^{2}-a$. We have $y^{2}-a=\left(x+c p^{e}\right)^{2}-a=$ $x^{2}-a+2 x c p^{e}+c^{2} p^{2 e}=(b+2 x c) p^{e}+c^{2} p^{2 e}$.

Now we claim that we can choose c such that $b+2 x c$ is a multiple of p. Indeed, since $p \nmid a$, we have $p \nmid x$, hence $\operatorname{hcf}(2 x, p)=1$. It follows by Proposition 2.5 that the congruence equation $2 x z \equiv-b(\bmod p)$ (think of it as an equation of z) has a solution for z. Let $z=c$ be such a solution, then $2 x c+b$ is a multiple of p, hence $(b+2 x c) p^{e}$ is a multiple of p^{e+1}. On the other hand $c^{2} p^{2 e}$ is also a multiple of p^{e+1} because $2 e \geqslant e+1$. It follows that $y^{2}-a$ is a multiple of p^{e+1}, or equivalently, $y^{2} \equiv a\left(\bmod p^{e+1}\right)$. Since $p \nmid a$, we have $\operatorname{hcf}\left(a, p^{e+1}\right)=1$. Therefore a is a quadratic residue modulo p^{e+1}.
(3) By parts (1) and (2), a is a quadratic residue modulo p^{e} iff a is a quadratic residue modulo p^{e+1}. Using this result inductively, we can conclude that a is a quadratic
residue modulo p^{e} for any positive integer e iff p is a quadratic residue modulo p, which is equivalent to $\left(\frac{a}{p}\right)=1$.

Solution 5.4. Fermat's two-square problem.
(1) Since $p \equiv 1(\bmod 4),-1$ is a quadratic residue modulo p. In other words, $x^{2} \equiv-1$ $(\bmod p)$ has a solution. Let $x=s$ be one such solution, then $s^{2}+1$ is a multiple of p. We can then write $s^{2}+1=p t$, where $s, t \in \mathbb{Z}$. It follows that p divides $s^{2}+1=(s+i)(s-i)$ in $\mathbb{Z}[i]$. If p could divide $s+i$ in $\mathbb{Z}[i]$, then we can write $s+i=p(x+y i)$ for some $x, y \in \mathbb{Z}$. It follows that $p y=1$. Contradiction. Therfore p does not divide $s+i$. Similar one can show that p does not divide $s-i$. Hence p is not a prime, because p divides the product of $s+i$ and $s-i$ but neither of the factors.
(2) We know from Exercise 1.4 (2) that $\mathbb{Z}[i]$ is a Euclidean domain, hence a PID. By Proposition 1.9 (2), every irreducible element in $\mathbb{Z}[i]$ is a prime. By part (1), p is not a prime in $\mathbb{Z}[i]$ hence is not irreducible. It follows that we can write $p=\alpha \beta$, such that α and β are non-units. We apply Exercise 1.4 (1) and get $\nu(p)=\nu(\alpha) \nu(\beta)$. By the formula of the valuation ν, the left-hand side is p^{2}. By Exercise 1.4 (4), neither of the factor on the right-hand side is 1 . Therefore the only possibility is $\nu(\alpha)=\nu(\beta)=p$. Let $\alpha=a+b i$ for some $a, b \in \mathbb{Z}$. Then $\nu(\alpha)=a^{2}+b^{2}=p$.
(3) We show that $a^{2} \equiv 0$ or $1(\bmod 4)$ for every $a \in \mathbb{Z}$. Indeed, if a is even, say $a=2 k$ for some $k \in \mathbb{Z}$, then $a^{2}=4 k^{2} \equiv 0(\bmod 4)$. If a is odd, say $a=2 k+1$ for some $k \in \mathbb{Z}$, then $a^{2}=(2 k+1)^{2}=4 k^{2}+4 k+1 \equiv 1(\bmod 4)$. The same is true for b^{2}. We consider all the combinations and conclude that $a^{2}+b^{2} \equiv 0$ or 1 or $2(\bmod 4)$. By assumption $p \equiv 3(\bmod 4)$, hence $p=a^{2}+b^{2}$ is never possible.

