Solutions to Exercise Sheet 6

Solution 6.1. Examples of algebraic integers.

(1) $\frac{1}{2}(1+\sqrt{5})$ is an algebraic integer because it is a root of the polynomial $x^{2}-x-1$. For $3+i$, we let $x=3+i$, rewrite it as $x-3=i$ and square both sides to get $x^{2}-6 x+9=-1$, hence $3+i$ is the root of the polynomial $x^{2}-6 x+10$.

For $\sqrt{2}+\sqrt[3]{3}$, we let $x=\sqrt{2}+\sqrt[3]{3}$, rewrite it as $x-\sqrt{2}=\sqrt[3]{3}$, take the third powers to get $x^{3}-3 \sqrt{2} x^{2}+6 x-2 \sqrt{2}=3$. We rewrite it as $x^{3}+6 x-3=\left(3 x^{2}+2\right) \sqrt{2}$ and square both sides to get $\left(x^{3}+6 x-3\right)^{2}=2\left(3 x^{2}+2\right)^{2}$. Then we conclude that $\sqrt{2}+\sqrt[3]{3}$ is the root of the polynomial $\left(x^{3}+6 x-3\right)^{2}-2\left(3 x^{2}+2\right)^{2}=x^{6}-6 x^{4}-$ $6 x^{3}+12 x^{2}-36 x+1$. Notice that all coefficients are integers, and the leading term x^{6} has coefficient 1 . This shows $\sqrt{2}+\sqrt[3]{3}$ is an algebraic integer.
(2) $\frac{1}{2}$ is an algebraic number because it is the root of $2 x-1$. We show it is not an algebraic integer by contradiction. Assume it is the root of a monic polynomial

$$
x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\cdots+a_{n-2} x^{2}+a_{n-1} x+a_{n} .
$$

By substitution $x=\frac{1}{2}$ we have

$$
\frac{1}{2^{n}}+\frac{a_{1}}{2^{n-1}}+\frac{a_{2}}{2^{n-2}}+\cdots+\frac{a_{n-2}}{2^{2}}+\frac{a_{n-1}}{2}+a_{n}=0 .
$$

Now we multiply 2^{n} on both sides to clear the denominators and obtain

$$
1+2 a_{1}+2^{2} a_{2}+\cdots+2^{n-2} a_{n-2}+2^{n-1} a_{n-1}+2^{n} a_{n}=0 .
$$

The left-hand side is an odd number. Contradiction. Therefore $\frac{1}{2}$ is not an algebraic integer.
(3) Since α is an algebraic integer, it is a root of a polynomial $f(x)=x^{n}+a_{1} x^{n-1}+$ $a_{2} x^{n-2}+a_{3} x^{n-3}+\cdots+a_{n-1} x+a_{n} \in \mathbb{Z}[x]$. We consider the polynomial $g(x)=$ $x^{n}-a_{1} x^{n-1}+a_{2} x^{n-2}-a_{3} x^{n-3}+\cdots+(-1)^{n-1} a_{n-1} x+(-1)^{n} a_{n}$, which is a monic polynomial with integer coefficients. We claim that $-\alpha$ is a root of $g(x)$. Indeed, we have

$$
\begin{aligned}
g(-\alpha)= & (-\alpha)^{n}-a_{1}(-\alpha)^{n-1}+a_{2}(-\alpha)^{n-2}-a_{3}(-\alpha)^{n-3}+\cdots \\
& \cdots+(-1)^{n-1} a_{n-1}(-\alpha)+(-1)^{n} a_{n} \\
= & (-1)^{n}\left(\alpha^{n}+a_{1} \alpha^{n-1}+a_{2} \alpha^{n-2}+a_{3} \alpha^{n-3}+\cdots+a_{n-1} \alpha+a_{n}\right) \\
= & 0
\end{aligned}
$$

Hence $-\alpha$ is an algebraic integer.
The following is another proof. I would like to thank people who provided this much better proof in their submitted solutions.

Since both α and -1 are algebraic integers, and the product of two algebraic integers is still an algebraic integer, we immediately know $-\alpha$ is an algebraic integer.

Solution 6.2. Examples of traces and norms.
(1) We have $L_{\alpha}(1)=a+b \sqrt[3]{2}+c \sqrt[3]{4}, L_{\alpha}(\sqrt[3]{2})=2 c+a \sqrt[3]{2}+b \sqrt[3]{4}, L_{\alpha}(\sqrt[3]{4})=2 b+$ $2 c \sqrt[3]{2}+a \sqrt[3]{4}$. We write the coefficients as column vectors and get the matrix

$$
M=\left(\begin{array}{ccc}
a & 2 c & 2 b \\
b & a & 2 c \\
c & b & a
\end{array}\right)
$$

Therefore we have $T(\alpha)=\operatorname{tr}(M)=3 a$ and $N(\alpha)=\operatorname{det}(M)=a^{3}+2 b^{3}+4 c^{3}-6 a b c$.
(2) We have $L_{\zeta}(1)=\zeta, L_{\zeta}(\zeta)=\zeta^{2}, L_{\zeta}\left(\zeta^{2}\right)=\zeta^{3}, L_{\zeta}\left(\zeta^{3}\right)=\zeta^{4}=-\zeta^{3}-\zeta^{2}-\zeta-1$. Hence the matrix is

$$
M=\left(\begin{array}{cccc}
0 & 0 & 0 & -1 \\
1 & 0 & 0 & -1 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & -1
\end{array}\right)
$$

Therefore we have $T(\zeta)=\operatorname{tr}(M)=-1$ and $N(\zeta)=\operatorname{det}(M)=1$.
Solution 6.3. Elementary properties of the trace and norm.
(1) For any $\gamma \in K, L_{\alpha+\beta}(\gamma)=(\alpha+\beta) \gamma=\alpha \gamma+\beta \gamma=L_{\alpha}(\gamma)+L_{\beta}(\gamma)$. Hence the linear transformation $L_{\alpha+\beta}$ is the sum of the two linear transformations L_{α} and L_{β}. Under any fixed basis, if the matrices for L_{α} and L_{β} are A and B respectively, then their sum $L_{\alpha+\beta}$ corresponds to the matrix $A+B$. Since we have $\operatorname{tr}(A+B)=\operatorname{tr}(A)+\operatorname{tr}(B)$, we get $T(\alpha+\beta)=T(\alpha)+T(\beta)$.

For any $\gamma \in K, L_{\alpha \beta}(\gamma)=(\alpha \beta) \gamma=\alpha(\beta \gamma)=L_{\alpha}\left(L_{\beta}(\gamma)\right)$. Hence the linear transformation $L_{\alpha \beta}$ is the composition of the two linear transformations L_{α} and L_{β}. Under any fixed basis, if the matrices for L_{α} and L_{β} are A and B respectively, then their composition $L_{\alpha \beta}$ corresponds to the matrix $A B$. Since we have $\operatorname{det}(A B)=$ $\operatorname{det}(A) \operatorname{det}(B)$, we get $N(\alpha \beta)=N(\alpha) N(\beta)$.
(2) For any $\gamma \in K, L_{a \alpha}(\gamma)=(a \alpha) \gamma=a(\alpha \gamma)=a L_{\alpha}(\gamma)$. Hence the linear transformation $L_{a \alpha}$ is the linear transformation $a \cdot L_{\alpha}$. Under any fixed basis, if the matrices for L_{α} is A, then the matrix corresponds to $L_{a \alpha}$ is $a A$. Since we have $\operatorname{tr}(a A)=a \operatorname{tr}(A)$, we get $T(a \alpha)=a T(\alpha)$. Similarly, since we have $\operatorname{det}(a A)=a^{n} \operatorname{det}(A)$ as A is an $n \times n$ matrix, we get $N(a \alpha)=a^{n} N(\alpha)$.
(3) For any $\gamma \in K, L_{1}(\gamma)=\gamma$. Hence the linear transformation L_{1} is the identity map. Under any basis, its matrix is the $n \times n$ identity matrix I_{n}. Therefore $T(1)=\operatorname{tr}\left(I_{n}\right)=n$ and $N(1)=\operatorname{det}\left(I_{n}\right)=1$.
(4) If $\alpha=0$, then L_{α} is the zero linear transformation, hence $N(0)=0$. Now we prove the other direction. We assume that $N(\alpha)=0$ for some $\alpha \in K$. Under a fixed basis, we assume the matrix for L_{α} is A. Then $\operatorname{det}(A)=0$, which means that A has a non-trivial null space. In other words, there is a non-zero vector \mathbf{v} such that $A \mathbf{v}=0$. But \mathbf{v} is the vector form of some non-zero element $\gamma \in K$. Hence we have $L_{\alpha}(\gamma)=0$. In other words, $\alpha \gamma=0$. Since $\gamma \neq 0$, we must have $\alpha=0$.

Solution 6.4. Traces and norms of algebraic integers.
(1) We first check S is a spanning set. For any $x \in K$, since $\left\{\beta_{j} \mid 0 \leqslant j \leqslant n-1\right\}$ is a spanning set for K over $\mathbb{Q}(\alpha)$, there exist $a_{j} \in \mathbb{Q}(\alpha)$ for $0 \leqslant j \leqslant n-1$ such that

$$
x=\sum_{j=0}^{n-1} a_{j} \beta_{j} .
$$

Since $\left\{\alpha^{i} \mid 0 \leqslant i \leqslant m-1\right\}$ is a spanning set for $\mathbb{Q}(\alpha)$ over \mathbb{Q}, for every j there exists $b_{i j} \in \mathbb{Q}$ for $0 \leqslant i \leqslant m-1$ such that

$$
a_{j}=\sum_{i=0}^{m-1} b_{i j} \alpha^{i} .
$$

Therefore we have

$$
x=\sum_{j=0}^{n-1} \sum_{i=0}^{m-1} b_{i j} \alpha^{i} \beta_{j},
$$

which implies that S is a spanning set for K over \mathbb{Q}.
(2) We then check elements in S are independent over \mathbb{Q}. Assume we have

$$
\sum_{j=0}^{n-1} \sum_{i=0}^{m-1} b_{i j} \alpha^{i} \beta_{j}=0
$$

for some $b_{i j} \in \mathbb{Q}$. We can group the terms as

$$
\sum_{j=0}^{n-1}\left(\sum_{i=0}^{m-1} b_{i j} \alpha^{i}\right) \beta_{j}=0 .
$$

Since $\sum_{i=0}^{m-1} b_{i j} \alpha^{i} \in \mathbb{Q}(\alpha)$ for each j, and $\left\{\beta_{j}\right\}$ are independent over $\mathbb{Q}(\alpha)$, we conclude that

$$
\sum_{i=0}^{m-1} b_{i j} \alpha^{i}=0
$$

for each j. Moreover by the linear independence of $\left\{\alpha^{i}\right\}$, we conclude that

$$
b_{i j}=0
$$

for every pair (i, j), which implies that elements in S are independent over \mathbb{Q}.
(3) Now we compute the matrix of L_{α} under the basis S for K over \mathbb{Q}. We assume that α is a root of a monic irreducible polynomial $g(x) \in \mathbb{Z}[x]$ of degree m, and we write

$$
g(x)=x^{m}+c_{1} x^{m-1}+\cdots+c_{m-1} x+c_{m}
$$

where $c_{1}, \cdots, c_{l} \in \mathbb{Z}$. For every pair of (i, j), we have

$$
L_{\alpha}\left(\alpha^{i} \beta_{j}\right)= \begin{cases}\alpha^{i+1} \beta_{j} & \text { if } 0 \leqslant i \leqslant l-2 \\ \alpha^{l} \beta_{j}=-c_{1} \alpha^{l-1} \beta_{j}-\cdots-c_{l-1} \alpha \beta_{j}-c_{n} \beta_{j} & \text { if } i=l-1\end{cases}
$$

We observe that all coefficients are integers, hence the matrix M associated to the linear transformation L_{α} under the basis S is a matrix with integer entries. It follows that $T(\alpha)$ and $N(\alpha)$, as the trace and determinant of M, are also integers.

More precisely, the matrix M can be written in the following block diagonal form

$$
M=\left(\begin{array}{llll}
D & & & \\
& D & & \\
& & \ddots & \\
& & & D
\end{array}\right)
$$

where each block along the diagonal is given by

$$
D=\left(\begin{array}{cccccc}
0 & 0 & 0 & \cdots & 0 & -c_{m} \\
1 & 0 & 0 & \cdots & 0 & -c_{m-1} \\
0 & 1 & 0 & \cdots & 0 & -c_{m-2} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 0 & -c_{2} \\
0 & 0 & 0 & \cdots & 1 & -c_{1}
\end{array}\right) .
$$

Hence $T(\alpha)=\operatorname{tr}(M)=-n c_{1} \in \mathbb{Z}$ and $N(\alpha)=\operatorname{det}(M)=\left((-1)^{m} c_{m}\right)^{n} \in \mathbb{Z}$.

