Solutions to Exercise Sheet 7

Solution 7.1. Examples of discriminants.
(1) By the definition of the discriminants, we need to compute

$$
\Delta(1, \sqrt[3]{2}, \sqrt[3]{4})=\operatorname{det}\left(\begin{array}{ccc}
T(1) & T(\sqrt[3]{2}) & T(\sqrt[3]{4}) \\
T(\sqrt[3]{2}) & T(\sqrt[3]{4}) & T(2) \\
T(\sqrt[3]{4}) & T(2) & T(2 \sqrt[3]{2})
\end{array}\right)
$$

By Exercise 6.2 (1), if $\alpha=a+b \sqrt[3]{2}+c \sqrt[3]{4} \in K$ for some $a, b, c \in \mathbb{Q}$, then the trace of α in $\mathbb{Q}(\sqrt[3]{2})$ is given by $T(\alpha)=3 a$. Hence we have $T(1)=3, T(2)=6$, while $T(\sqrt[3]{2})=T(\sqrt[3]{4})=T(2 \sqrt[3]{2})=0$. Therefore

$$
\Delta(1, \sqrt[3]{2}, \sqrt[3]{4})=\operatorname{det}\left(\begin{array}{lll}
3 & 0 & 0 \\
0 & 0 & 6 \\
0 & 6 & 0
\end{array}\right)=-108
$$

(2) The discriminant that we need to compute is given by

$$
\Delta\left(1, \zeta, \zeta^{2}, \zeta^{3}\right)=\operatorname{det}\left(\begin{array}{cccc}
T(1) & T(\zeta) & T\left(\zeta^{2}\right) & T\left(\zeta^{3}\right) \\
T(\zeta) & T\left(\zeta^{2}\right) & T\left(\zeta^{3}\right) & T\left(\zeta^{4}\right) \\
T\left(\zeta^{2}\right) & T\left(\zeta^{3}\right) & T\left(\zeta^{4}\right) & T(1) \\
T\left(\zeta^{3}\right) & T\left(\zeta^{4}\right) & T(1) & T(\zeta)
\end{array}\right)
$$

Following the method in Exercise 6.2 (2), we can write down the matrices corresponding to $L_{1}, L_{\zeta}, L_{\zeta^{2}}, L_{\zeta^{3}}$ and $L_{\zeta^{4}}$ under the basis $\left\{1, \zeta, \zeta^{2}, \zeta^{3}\right\}$ to compute the corresponding traces. More precisely, we have $T(1)=4$ by Lemma 6.16 (3) and

$$
\begin{array}{ll}
T(\zeta)=\operatorname{tr}\left(\begin{array}{cccc}
0 & 0 & 0 & -1 \\
1 & 0 & 0 & -1 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & -1
\end{array}\right)=-1 ; & T\left(\zeta^{2}\right)=\operatorname{tr}\left(\begin{array}{cccc}
0 & 0 & -1 & 1 \\
0 & 0 & -1 & 0 \\
1 & 0 & -1 & 0 \\
0 & 1 & -1 & 0
\end{array}\right)=-1 ; \\
T\left(\zeta^{3}\right)=\operatorname{tr}\left(\begin{array}{llll}
0 & -1 & 1 & 0 \\
0 & -1 & 0 & 1 \\
0 & -1 & 0 & 0 \\
1 & -1 & 0 & 0
\end{array}\right)=-1 ; \quad T\left(\zeta^{4}\right)=\operatorname{tr}\left(\begin{array}{cccc}
-1 & 1 & 0 & 0 \\
-1 & 0 & 1 & 0 \\
-1 & 0 & 0 & 1 \\
-1 & 0 & 0 & 0
\end{array}\right)=-1 .
\end{array}
$$

Therefore, the discriminant can be computed as

$$
\Delta\left(1, \zeta, \zeta^{2}, \zeta^{3}\right)=\operatorname{det}\left(\begin{array}{cccc}
4 & -1 & -1 & -1 \\
-1 & -1 & -1 & -1 \\
-1 & -1 & -1 & 4 \\
-1 & -1 & 4 & -1
\end{array}\right)=\operatorname{det}\left(\begin{array}{cccc}
5 & -1 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & -1 & 0 & 5 \\
0 & -1 & 5 & 0
\end{array}\right)=125 .
$$

Solution 7.2. The discriminant of an ideal. Since $\left\{\beta_{1}, \beta_{2}, \cdots, \beta_{n}\right\}$ is an integral basis for I, for each i we can write $\alpha_{i}=\sum_{j=1}^{n} a_{i j} \beta_{j}$, such that all entries of the transition matrix $M=\left(a_{i j}\right)$ are integers. By Proposition 7.6, we get

$$
\begin{equation*}
\Delta\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}\right)=(\operatorname{det} M)^{2} \Delta\left(\beta_{1}, \beta_{2}, \cdots, \beta_{n}\right) . \tag{7.2}
\end{equation*}
$$

Similarly we can write $\beta_{i}=\sum_{j=1}^{n} b_{i j} \alpha_{j}$ and all entries of the transition matrix $N=\left(b_{i j}\right)$ are also integers. By Proposition 7.6 we also get

$$
\begin{equation*}
\Delta\left(\beta_{1}, \beta_{2}, \cdots, \beta_{n}\right)=(\operatorname{det} N)^{2} \Delta\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}\right) \tag{7.3}
\end{equation*}
$$

By (7.2) and (7.3), we get

$$
\Delta\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}\right)=(\operatorname{det} M)^{2}(\operatorname{det} N)^{2} \Delta\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}\right) .
$$

Since $\Delta\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}\right) \neq 0$ by Proposition 7.5 , we get $(\operatorname{det} M)^{2}(\operatorname{det} N)^{2}=1$. Since all entries of M and N are integers, $(\operatorname{det} M)^{2}$ and $(\operatorname{det} N)^{2}$ are both non-negative integers, hence $(\operatorname{det} M)^{2}=(\operatorname{det} N)^{2}=1$, and the statement we want to prove follows.

Solution 7.3. The discriminant of a quadratic field.
(1) In Example 6.18 we know that, for any $\alpha=a+b \sqrt{d} \in K$ for $a, b \in \mathbb{Q}$, its trace in K is given by $T(\alpha)=2 a$. Therefore we have

$$
\Delta(1, \sqrt{d})=\operatorname{det}\left(\begin{array}{cc}
T(1) & T(\sqrt{d}) \\
T(\sqrt{d}) & T(d)
\end{array}\right)=\operatorname{det}\left(\begin{array}{cc}
2 & 0 \\
0 & 2 d
\end{array}\right)=4 d .
$$

Since $\{1, \sqrt{d}\}$ is an integral basis by Proposition 7.2, we conclude that $\Delta_{K}=4 d$ for the quadratic field $K=\mathbb{Q}(\sqrt{d})$ when $d \equiv 2$ or $3(\bmod 4)$.
(2) We still use the same formula as in part (1). Notice that $T\left(\frac{1+\sqrt{d}}{2}\right)=2 \cdot \frac{1}{2}=1$ and $T\left(\left(\frac{1+\sqrt{d}}{2}\right)^{2}\right)=T\left(\frac{1+d+2 \sqrt{d}}{4}\right)=2 \cdot \frac{1+d}{4}=\frac{1+d}{2}$. Then we have

$$
\Delta\left(1, \frac{1+\sqrt{d}}{2}\right)=\operatorname{det}\left(\begin{array}{cc}
T(1) & T\left(\frac{1+\sqrt{d}}{2}\right) \\
T\left(\frac{1+\sqrt{d}}{2}\right) & T\left(\left(\frac{1+\sqrt{d}}{2}\right)^{2}\right)
\end{array}\right)=\operatorname{det}\left(\begin{array}{cc}
2 & 1 \\
1 & \frac{1+d}{2}
\end{array}\right)=d .
$$

Since $\left\{1, \frac{1+\sqrt{d}}{2}\right\}$ is an integral basis by Proposition 7.2, we conclude that $\Delta_{K}=d$ for the quadratic field $K=\mathbb{Q}(\sqrt{d})$ when $d \equiv 1(\bmod 4)$.

Solution 7.4. Integral basis of a principal ideal.
(1) Since $\alpha \in I$ and $\omega_{i} \in \mathcal{O}_{K}$ for each i, by the definition of an ideal, we get $\alpha \omega_{i} \in I$ for each i.
(2) Assume $b_{1} \alpha \omega_{1}+b_{2} \alpha \omega_{2}+\cdots+b_{n} \alpha \omega_{n}=0$ for some $b_{1}, b_{2}, \cdots, b_{n} \in \mathbb{Q}$. Since $\alpha \neq 0$ we get $b_{1} \omega_{1}+b_{2} \omega_{2}+\cdots+b_{n} \omega_{n}=0$. It follows that $b_{i}=0$ for each i, since $\left\{\omega_{1}, \omega_{2}, \cdots, \omega_{n}\right\}$ is a \mathbb{Q}-basis for K. Therefore $\left\{\alpha \omega_{1}, \alpha \omega_{2}, \cdots, \alpha \omega_{n}\right\}$ are \mathbb{Q}-independent. Thus they form a \mathbb{Q}-basis for K.
(3) Every $\gamma \in I=(\alpha)$ can be written as $\gamma=\alpha \beta$ for some $\beta \in \mathcal{O}_{K}$. Since $\left\{\omega_{1}, \omega_{2}, \cdots, \omega_{n}\right\}$ is an integral basis for \mathcal{O}_{K}, we can write $\beta=b_{1} \omega_{1}+b_{2} \omega_{2}+\cdots+b_{n} \omega_{n}$ for $b_{1}, b_{2}, \cdots, b_{n} \in \mathbb{Z}$. Hence $\gamma=b_{1} \alpha \omega_{1}+b_{2} \alpha \omega_{2}+\cdots+b_{n} \alpha \omega_{n}$ is an integral linear combination of $\left\{\alpha \omega_{1}, \alpha \omega_{2}, \cdots, \alpha \omega_{n}\right\}$. Together with the result in part (2), we conclude that $\alpha \omega_{1}, \alpha \omega_{2}, \cdots, \alpha \omega_{n}$ is an integral basis for I.
(4) By Proposition 7.2, an integral basis for \mathcal{O}_{K} is given by $\left\{\omega_{1}=1, \omega_{2}=\sqrt{3}\right\}$. By the conclusion in part (3), an integral basis for I is given by $\left\{\alpha \omega_{1}=\sqrt{3}, \alpha \omega_{2}=3\right\}$. Therefore we have

$$
\Delta(I)=\Delta(\sqrt{3}, 3)=\operatorname{det}\left(\begin{array}{cc}
T(3) & T(3 \sqrt{3}) \\
T(3 \sqrt{3}) & T(9)
\end{array}\right)=\operatorname{det}\left(\begin{array}{cc}
6 & 0 \\
0 & 18
\end{array}\right)=108 .
$$

