SOLUTIONS TO EXERCISE SHEET 7

Solution 7.1. Fxamples of discriminants.

(1) By the definition of the discriminants, we need to compute
T() T2 T
A(1,¥/2,V4) = det | T(3/2) T(V4) T(2)
T(V4) T@2) T(2V2)
By Exercise 6.2 (1), if & = a 4+ by/2 + ¢v/4 € K for some a, b, c € Q, then the trace
of a in Q(¥/2) is given by T'(a) = 3a. Hence we have T(1) = 3, T'(2) = 6, while
T(3/2) = T(¥/4) = T(2+/2) = 0. Therefore

A(1,v/2,V/4) = det

o O W

00
0 6= —108.
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(2) The discriminant that we need to compute is given by

T() T T T
2
ALY =det | 26 ) T

Following the method in Exercise 6.2 (2), we can write down the matrices corre-
sponding to Ly, L¢, L¢2, Les and Les under the basis {1, ¢, (%, ¢*} to compute the
corresponding traces. More precisely, we have T'(1) = 4 by Lemma 6.16 (3) and

000 -1 00 -1 1
1 00 -1 00 -1 0

T() = =-1;, T = = -1
001 —1 01 -1 0
0 -1 1 0 -1 1 00
0 —1 0 1 -1 010

T =t = —1; T(H =t = —1.
(=1 21 0 0 ’ O
1 -1 0 0 -1 0 0 O

Therefore, the discriminant can be computed as

4 -1 -1 -1 5 =1 0 0
-1 -1 -1 -1 0 -1 00

A(1,¢, 3 = = = 125.
-1 -1 4 -1 0 -1 50
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Solution 7.2. The discriminant of an ideal. Since {1, Ba,- -+, B,} is an integral basis for
I, for each i we can write a; = Y7 | a;;3;, such that all entries of the transition matrix
M = (a;;) are integers. By Proposition 7.6, we get

Alay, ag, - ap) = (det M)2A(By, Bay -+, B)- (7.2)
Similarly we can write 8; = > .7, bjja; and all entries of the transition matrix N = (b;;)
are also integers. By Proposition 7.6 we also get
A(BL, Ba, -, Ba) = (det N2 Ay, g, -+, ). (7.3)
By (7.2) and (7.3), we get
Alay, ag, - o) = (det M)*(det N)?Alay, ag, -, ).

Since A(ay,as, - ,a,) # 0 by Proposition 7.5, we get (det M)?(det N)? = 1. Since all
entries of M and N are integers, (det M)? and (det N)? are both non-negative integers,
hence (det M)? = (det N)? = 1, and the statement we want to prove follows.

Solution 7.3. The discriminant of a quadratic field.

(1) In Example 6.18 we know that, for any o = a + bv/d € K for a,b € Q, its trace in
K is given by T'(a) = 2a. Therefore we have

_ T(1) TV _ 2.0 _
A(1,Vd) = det (T(\/a) T(d) ) = det (O 2d> = 4d.

Since {1,4/d} is an integral basis by Proposition 7.2, we conclude that Ag = 4d
for the quadratic field K = Q(v/d) when d =2 or 3 (mod 4).

(2) We still use the same formula as in part (1). Notice that T'(1:2/4) = 2. s =1and

2
T((%Ef) - T(Wa) =214 — 14 Then we have

1++/d ) T(%a 2 1
A(l, 5 >=det T(#) T((#)g) zdet<1 l%l>=d.

Since {1, 1+2‘/3} is an integral basis by Proposition 7.2, we conclude that Ax = d

for the quadratic field K = Q(v/d) when d =1 (mod 4).

Solution 7.4. Integral basis of a principal ideal.

(1) Since a € I and w; € O for each i, by the definition of an ideal, we get aw; € T

for each 1.

(2) Assume bjaw; + byawy + -+ + byaw, = 0 for some by, by,--- b, € Q. Since
a # 0 we get byjwy + bawy + -+ + byw, = 0. It follows that b; = 0 for each
i, since {wy,ws, - ,w,} is a Q-basis for K. Therefore {aw;, aws, -, aw,} are

Q-independent. Thus they form a Q-basis for K.
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(3) Every v € I = (a) can be written as v = af for some € Ok. Since {wy,wa, -+ ,wy,}
is an integral basis for Ok, we can write f = bjw; + bows + -+ + b,w, for
bi,bg, -+ ,b, € Z. Hence v = bjaw; + byaws + -+ + b,aw, is an integral lin-
ear combination of {aw1, aws, - -+ , aw,}. Together with the result in part (2), we
conclude that aw, aws, -+ , aw, is an integral basis for I.

(4) By Proposition 7.2, an integral basis for O is given by {w; = 1,wy, = v/3}. By
the conclusion in part (3), an integral basis for I is given by {aw; = \/g, aws = 3}.
Therefore we have

A(I) = A(V3,3) = det (ng’/)g) Téf’(g/)g)> = det (g 108> = 108.
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