
Solutions to Exercise Sheet 7

Solution 7.1. Examples of discriminants.

(1) By the definition of the discriminants, we need to compute
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By Exercise 6.2 (1), if α � a� b 3
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(2) The discriminant that we need to compute is given by

∆p1, ζ, ζ2, ζ3q � det

�
����
T p1q T pζq T pζ2q T pζ3q
T pζq T pζ2q T pζ3q T pζ4q
T pζ2q T pζ3q T pζ4q T p1q
T pζ3q T pζ4q T p1q T pζq

�
���.

Following the method in Exercise 6.2 (2), we can write down the matrices corre-

sponding to L1, Lζ , Lζ2 , Lζ3 and Lζ4 under the basis t1, ζ, ζ2, ζ3u to compute the

corresponding traces. More precisely, we have T p1q � 4 by Lemma 6.16 (3) and
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Therefore, the discriminant can be computed as
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Solution 7.2. The discriminant of an ideal. Since tβ1, β2, � � � , βnu is an integral basis for

I, for each i we can write αi �
°n
j�1 aijβj, such that all entries of the transition matrix

M � paijq are integers. By Proposition 7.6, we get

∆pα1, α2, � � � , αnq � pdetMq2∆pβ1, β2, � � � , βnq. (7.2)

Similarly we can write βi �
°n
j�1 bijαj and all entries of the transition matrix N � pbijq

are also integers. By Proposition 7.6 we also get

∆pβ1, β2, � � � , βnq � pdetNq2∆pα1, α2, � � � , αnq. (7.3)

By (7.2) and (7.3), we get

∆pα1, α2, � � � , αnq � pdetMq2pdetNq2∆pα1, α2, � � � , αnq.
Since ∆pα1, α2, � � � , αnq � 0 by Proposition 7.5, we get pdetMq2pdetNq2 � 1. Since all

entries of M and N are integers, pdetMq2 and pdetNq2 are both non-negative integers,

hence pdetMq2 � pdetNq2 � 1, and the statement we want to prove follows.

Solution 7.3. The discriminant of a quadratic field.

(1) In Example 6.18 we know that, for any α � a� b
?
d P K for a, b P Q, its trace in

K is given by T pαq � 2a. Therefore we have
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Since t1,?du is an integral basis by Proposition 7.2, we conclude that ∆K � 4d

for the quadratic field K � Qp?dq when d � 2 or 3 pmod 4q.
(2) We still use the same formula as in part (1). Notice that T p1�?d
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Since t1, 1�?d
2
u is an integral basis by Proposition 7.2, we conclude that ∆K � d

for the quadratic field K � Qp?dq when d � 1 pmod 4q.
Solution 7.4. Integral basis of a principal ideal.

(1) Since α P I and ωi P OK for each i, by the definition of an ideal, we get αωi P I
for each i.

(2) Assume b1αω1 � b2αω2 � � � � � bnαωn � 0 for some b1, b2, � � � , bn P Q. Since

α � 0 we get b1ω1 � b2ω2 � � � � � bnωn � 0. It follows that bi � 0 for each

i, since tω1, ω2, � � � , ωnu is a Q-basis for K. Therefore tαω1, αω2, � � � , αωnu are

Q-independent. Thus they form a Q-basis for K.
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(3) Every γ P I � pαq can be written as γ � αβ for some β P OK . Since tω1, ω2, � � � , ωnu
is an integral basis for OK , we can write β � b1ω1 � b2ω2 � � � � � bnωn for

b1, b2, � � � , bn P Z. Hence γ � b1αω1 � b2αω2 � � � � � bnαωn is an integral lin-

ear combination of tαω1, αω2, � � � , αωnu. Together with the result in part (2), we

conclude that αω1, αω2, � � � , αωn is an integral basis for I.

(4) By Proposition 7.2, an integral basis for OK is given by tω1 � 1, ω2 �
?

3u. By

the conclusion in part (3), an integral basis for I is given by tαω1 �
?

3, αω2 � 3u.
Therefore we have
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