Solutions to Exercise Sheet 8

Solution 8.1. Examples of norms of ideals.
(1) Using the formula in Example 6.18, we have $N(\alpha)=a^{2}-b^{2} d$. By Proposition 8.9, $N(I)=|N(\alpha)|=\left|a^{2}-b^{2} d\right|$.
(2) By Lemma 6.16, we have $N(a)=a^{n} N(1)=a^{n}$. (We can also do it by writing down a matrix for L_{a}, which is a diagonal matrix with a 's along the diagonal.) By Proposition 8.9, $N(I)=|N(a)|=\left|a^{n}\right|$.

Solution 8.2. Examples of sums and products of ideals.
(1) We show $I J \subseteq I$. Every element in $I J$ has the form $a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{k} b_{k}$ for some positive integer k, where $a_{i} \in I, b_{i} \in J$ for each $i=1,2, \cdots, k$. Since $a_{i} \in I$ and $b_{i} \in J \subseteq R$, we have $a_{i} b_{i} \in I$ for each i. Hence their sum $a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{k} b_{k} \in I$. We then show $I \subseteq I+J$. For every element $a \in I$, we have $a=a+0 \in I+J$ since $0 \in J$. Both claims are proved.
(2) We need to show mutual inclusions. First we show $(\alpha) I \supseteq\{\alpha a \mid a \in I\}$. This is clear because $\alpha \in(\alpha)$ and $a \in I$ imply $\alpha a \in(\alpha) I$. Then we show the other inclusion $(\alpha) I \subseteq\{\alpha a \mid a \in I\}$. Every element in (α) has the form $r \alpha$ for some $r \in R$. By the definition of the product of two ideals, every element in (α)I can be written as a finite sum $r_{1} \alpha a_{1}+r_{2} \alpha a_{2}+\cdots+r_{k} \alpha a_{k}$ for some positive integer k, where $r_{1}, \cdots, r_{k} \in R$ and $a_{1}, \cdots, a_{k} \in I$. Since I is an ideal, we know that $r_{i} a_{i} \in I$ for each $i=1, \cdots, k$, hence $\gamma=r_{1} a_{1}+\cdots+r_{k} a_{k} \in I$. Therefore $r_{1} \alpha a_{1}+r_{2} \alpha a_{2}+\cdots+r_{k} \alpha a_{k}=\alpha\left(r_{1} a_{1}+\cdots+r_{k} a_{k}\right)=\alpha \gamma$ has the required form.
(3) We need to show mutual inclusions. First we show $(\alpha)(\beta) \supseteq(\alpha \beta)$. Every element in $(\alpha \beta)$ has the form $r \alpha \beta$ for some $r \in R$. since $r \alpha \in(\alpha)$ and $\beta \in(\beta)$, we know that $r \alpha \beta \in(\alpha)(\beta)$. We then show the other inclusion $(\alpha)(\beta) \subseteq(\alpha \beta)$. By part (2) we know $(\alpha)(\beta)=\{\alpha \gamma \mid \gamma \in(\beta)\}$, hence every element in $(\alpha)(\beta)$ has the form $\alpha \gamma$ for some $\gamma \in(\beta)$. We write $\gamma=\beta \delta$ for some $\delta \in R$, then $\alpha \gamma=\alpha \beta \delta \in(\alpha \beta)$.
(4) We need to show two directions. First we show every element in (x, y) is a polynomial with zero constant term. Since (x, y) is defined to be the sum of ideals $(x)+(y)$, every element in it has the form $x f+y g$ for some $f, g \in \mathbb{k}[x, y]$. Every term in the expansion of $x f+y g$ has either a factor of x (if it comes from $x f$) or a factor of y (if it comes from $y g$). Hence the expansion of $x f+y g$ is a polynomial with zero constant term. Now we show that every polynomial $h \in \mathbb{k}[x, y]$ with zero constant term is an element in (x, y). Since h has zero constant term, every non-zero term in h has a factor x or y (possibly both). Now we write h as the sum of two polynomials $h=h_{1}+h_{2}$ as follows: if a term in h is divisible by x but not divisible by y, then it becomes a term in h_{1}; if it is divisible by y but not by x,
then it becomes a term in h_{2}; if it is divisible by both x and y, then it becomes a term in either h_{1} or h_{2} (the one of your choice). Now we realise that every term in h_{1} is divisible by x, hence we can write $h_{1}=x f$ for some $f \in \mathbb{k}[x, y]$. Similarly every term in h_{2} is divisible by y, hence we can write $h_{2}=y g$ for some $g \in \mathbb{k}[x, y]$. Therefore $h=x f+y g \in(x)+(y)=(x, y)$.

Solution 8.3. Examples of prime and maximal ideals.
(1) It is clear that (p) is a proper ideal since $1 \notin(p)$. We first show (p) is a prime ideal. If $a b \in(p)$ for some $a, b \in \mathbb{Z}$, then $p \mid a b$. Since p is a prime, $p \mid a$ or $p \mid b$, which means either $a \in(p)$ or $b \in(p)$. Hence (p) is a prime ideal. We then show (p) is a maximal ideal. Assume there is an ideal I such that $(p) \subseteq I \subseteq \mathbb{Z}$. Since \mathbb{Z} is a PID, $I=(a)$ is a principal ideal generated by some $a \in \mathbb{Z}$. Then we have $(p) \subseteq(a) \subseteq \mathbb{Z}$, which implies that $p \in(a)$, hence $a \mid p$. It follows that $a= \pm 1$ or $\pm p$. In other words, $I=(a)=(1)=\mathbb{Z}$ or $I=(a)=(p)$. Hence (p) is a maximal ideal.
(2) It is clear that (x) is a proper ideal since the constant polynomial $1 \notin(x)$. We first show (x) is a prime ideal. If $f g \in(p)$ for some $f, g \in \mathbb{k}[x]$, then $x \mid f g$. Hence either f or g has a factor x, which means either $f \in(x)$ or $g \in(x)$. Hence (x) is a prime ideal. We then show (x) is a maximal ideal. Assume there is an ideal I such that $(x) \subseteq I \subseteq \mathbb{k}[x]$. Since $\mathbb{k}[x]$ is a PID, $I=(h)$ is a principal ideal generated by some $h \in \mathbb{k}[x]$. Then we have $(x) \subseteq(h) \subseteq \mathbb{k}[x]$, which implies that $x \in(h)$, hence h is a factor of x. It follows that h is a non-zero constant polynomial or a non-zero constant multiple of x. Since every non-zero constant polynomial is a unit in $\mathbb{k}[x]$, if h is a non-zero constant, then $I=(h)=\mathbb{k}[x]$; if h is a non-zero constant multiple of x, then $I=(h)=(x)$. Hence (x) is a maximal ideal.
(3) By Exercise 8.2 (4), every element in (x, y) is a polynomial with zero constant term. Hence the constant polynomial $1 \notin(x, y)$, and (x, y) is a proper ideal. We first show that (x, y) is a prime ideal. Assume $f g \in(x, y)$ for some $f, g \in \mathbb{k}[x, y]$. Then $f g$ has a zero constant term. It follows that either f or g has a zero constant term (otherwise the constant term of $f g$, as a product of two non-zero constant terms, is non-zero). This shows that either f or g is an element in (x, y), hence (x, y) is a prime ideal. We then show that (x, y) is a maximal ideal. Assume $(x, y) \subseteq I \subseteq \mathbb{k}[x, y]$. Then either $I=(x, y)$ or I contains some polynomial h with a non-zero constant term. In the second possibility, we write $h=h_{0}+c$ where c is the constant term of h while h_{0} is the sum of all other terms in h. Since $h \in I$ and $h_{0} \in(x, y) \subseteq I$, we know that $c=h-h_{0} \in I$. However c is a unit in $\mathbb{k}[x, y]$, hence $I=\mathbb{k}[x, y]$. We have proved that an intermediate ideal I is either (x, y) or $\mathbb{k}[x, y]$. Therefore (x, y) is a maximal ideal.

We now look at the ideal (x). Clearly $1 \notin(x)$, hence (x) is a proper ideal. We first show (x) is a prime ideal. If $f g \in(p)$ for some $f, g \in \mathbb{k}[x, y]$, then $x \mid f g$. Hence either f or g has a factor x, which means either $f \in(x)$ or $g \in(x)$. Hence (x) is a prime ideal. Then we show that (x) is not a maximal ideal. Indeed, it is clear that every polynomial in (x) is a multiple of x, hence has zero constant term. It follows that $(x) \subseteq(x, y)$. Since y is a polynomial in (x, y) but not in (x), we get the strict inclusions $(x) \subsetneq(x, y) \subsetneq \mathbb{k}[x, y]$, which shows that (x) is not maximal.

Solution 8.4. Cancellation law and "to contain is to divide".
(1) By Proposition 8.13, there is an ideal J such that $I J=(\gamma)$ is a non-zero principal ideal. Multiply $I J_{1}=I J_{2}$ on both sides by J. We find $(\gamma) J_{1}=(\gamma) J_{2}$.

We show that $J_{1} \subseteq J_{2}$. For any element $\alpha \in J_{1}$, we know that $\gamma \alpha \in(\gamma) J_{1}$ hence $\gamma \alpha \in(\gamma) J_{2}$. By Exercise 8.2 (2), we know that every element in $(\gamma) J_{2}$ can be written as $\gamma \beta$ for some $\beta \in J_{2}$. It follows that $\gamma \alpha=\gamma \beta$. Since $\gamma \neq 0$, we have $\alpha=\beta \in J_{2}$. This shows $J_{1} \subseteq J_{2}$. By switching subscripts we can show that $J_{2} \subseteq J_{1}$ using the same argument. Hence $J_{1}=J_{2}$.
(2) If $I_{2}=0$, then $I_{1}=0$, hence we can choose J to be any ideal in \mathcal{O}_{K}. If $I_{2} \neq 0$, then by Proposition 8.13, there is an ideal I_{3} and $\gamma \neq 0$ such that $I_{2} I_{3}=(\gamma)$. Hence we have $I_{1} I_{3} \subseteq I_{2} I_{3}=(\gamma)$. We define $J=\left\{\alpha \in \mathcal{O}_{K} \mid \gamma \alpha \in I_{1} I_{3}\right\}$.

We show that J is an ideal in \mathcal{O}_{K}. For any $\alpha_{1}, \alpha_{2} \in J$, we have $\gamma \alpha_{1}, \gamma \alpha_{2} \in I_{1} I_{3}$. Since $I_{1} I_{3}$ is an ideal, we get $\gamma\left(\alpha_{1}+\alpha_{2}\right)=\gamma \alpha_{1}+\gamma \alpha_{2} \in I_{1} I_{3}$. By the definition of $J, \alpha_{1}+\alpha_{2} \in J$. On the other hand, for any $\alpha \in J$ and any $\beta \in \mathcal{O}_{K}$, since $\alpha \gamma \in I_{1} I_{3}$ and $I_{1} I_{3}$ is an ideal, we know that $\beta \alpha \gamma \in I_{1} I_{3}$. It follows that $\beta \alpha \in J$ by the definition of J. These two conditions prove J is an ideal in \mathcal{O}_{K}.

We claim that $(\gamma) J=I_{1} I_{3}$. First we show that $(\gamma) J \subseteq I_{1} I_{3}$. By Exercise 8.2 (2), every element in $(\gamma) J$ can be written as $\gamma \alpha$ for some $\alpha \in J$. By the definition of J, we have $\gamma \alpha \in I_{1} I_{3}$. Hence $(\gamma) J \subseteq I_{1} I_{3}$. To show the other inclusion, assume we have $\beta \in I_{1} I_{3}$. Since $I_{1} I_{3} \subseteq(\gamma)$, we know $\beta \in(\gamma)$ hence $\beta=\gamma \alpha$ for some $\alpha \in \mathcal{O}_{K}$. In fact, by the definition of J we actually have $\alpha \in J$. Hence $\beta=\gamma \alpha \in(\gamma) J$, which shows that $I_{1} I_{3} \subseteq(\gamma) J$. The mutual inclusions show that $(\gamma) J=I_{1} I_{3}$. It follows that $I_{1} I_{3}=(\gamma) J=I_{2} I_{3} J$. By Corollary 8.14 which we have proved in part (1), we can cancel I_{3} on both sides and conclude $I_{1}=I_{2} J$.

