
Solutions to Exercise Sheet 8

Solution 8.1. Examples of norms of ideals.

(1) Using the formula in Example 6.18, we have Npαq � a2� b2d. By Proposition 8.9,

NpIq � |Npαq| � |a2 � b2d|.
(2) By Lemma 6.16, we have Npaq � anNp1q � an. (We can also do it by writing

down a matrix for La, which is a diagonal matrix with a’s along the diagonal.) By

Proposition 8.9, NpIq � |Npaq| � |an|.
Solution 8.2. Examples of sums and products of ideals.

(1) We show IJ � I. Every element in IJ has the form a1b1�a2b2�� � ��akbk for some

positive integer k, where ai P I, bi P J for each i � 1, 2, � � � , k. Since ai P I and

bi P J � R, we have aibi P I for each i. Hence their sum a1b1�a2b2�� � ��akbk P I.

We then show I � I � J . For every element a P I, we have a � a� 0 P I � J since

0 P J . Both claims are proved.

(2) We need to show mutual inclusions. First we show pαqI � tαa | a P Iu. This

is clear because α P pαq and a P I imply αa P pαqI. Then we show the other

inclusion pαqI � tαa | a P Iu. Every element in pαq has the form rα for some

r P R. By the definition of the product of two ideals, every element in pαqI can

be written as a finite sum r1αa1 � r2αa2 � � � � � rkαak for some positive integer

k, where r1, � � � , rk P R and a1, � � � , ak P I. Since I is an ideal, we know that

riai P I for each i � 1, � � � , k, hence γ � r1a1 � � � � � rkak P I. Therefore

r1αa1 � r2αa2 � � � � � rkαak � αpr1a1 � � � � � rkakq � αγ has the required form.

(3) We need to show mutual inclusions. First we show pαqpβq � pαβq. Every element

in pαβq has the form rαβ for some r P R. since rα P pαq and β P pβq, we know

that rαβ P pαqpβq. We then show the other inclusion pαqpβq � pαβq. By part (2)

we know pαqpβq � tαγ | γ P pβqu, hence every element in pαqpβq has the form αγ

for some γ P pβq. We write γ � βδ for some δ P R, then αγ � αβδ P pαβq.
(4) We need to show two directions. First we show every element in px, yq is a poly-

nomial with zero constant term. Since px, yq is defined to be the sum of ideals

pxq � pyq, every element in it has the form xf � yg for some f, g P krx, ys. Every

term in the expansion of xf �yg has either a factor of x (if it comes from xf) or a

factor of y (if it comes from yg). Hence the expansion of xf � yg is a polynomial

with zero constant term. Now we show that every polynomial h P krx, ys with

zero constant term is an element in px, yq. Since h has zero constant term, every

non-zero term in h has a factor x or y (possibly both). Now we write h as the sum

of two polynomials h � h1 � h2 as follows: if a term in h is divisible by x but not

divisible by y, then it becomes a term in h1; if it is divisible by y but not by x,
86



then it becomes a term in h2; if it is divisible by both x and y, then it becomes a

term in either h1 or h2 (the one of your choice). Now we realise that every term

in h1 is divisible by x, hence we can write h1 � xf for some f P krx, ys. Similarly

every term in h2 is divisible by y, hence we can write h2 � yg for some g P krx, ys.
Therefore h � xf � yg P pxq � pyq � px, yq.

Solution 8.3. Examples of prime and maximal ideals.

(1) It is clear that ppq is a proper ideal since 1 R ppq. We first show ppq is a prime

ideal. If ab P ppq for some a, b P Z, then p � ab. Since p is a prime, p � a or p � b,
which means either a P ppq or b P ppq. Hence ppq is a prime ideal. We then show

ppq is a maximal ideal. Assume there is an ideal I such that ppq � I � Z. Since

Z is a PID, I � paq is a principal ideal generated by some a P Z. Then we have

ppq � paq � Z, which implies that p P paq, hence a � p. It follows that a � �1 or

�p. In other words, I � paq � p1q � Z or I � paq � ppq. Hence ppq is a maximal

ideal.

(2) It is clear that pxq is a proper ideal since the constant polynomial 1 R pxq. We

first show pxq is a prime ideal. If fg P ppq for some f, g P krxs, then x � fg. Hence

either f or g has a factor x, which means either f P pxq or g P pxq. Hence pxq is a

prime ideal. We then show pxq is a maximal ideal. Assume there is an ideal I such

that pxq � I � krxs. Since krxs is a PID, I � phq is a principal ideal generated

by some h P krxs. Then we have pxq � phq � krxs, which implies that x P phq,
hence h is a factor of x. It follows that h is a non-zero constant polynomial or

a non-zero constant multiple of x. Since every non-zero constant polynomial is a

unit in krxs, if h is a non-zero constant, then I � phq � krxs; if h is a non-zero

constant multiple of x, then I � phq � pxq. Hence pxq is a maximal ideal.

(3) By Exercise 8.2 (4), every element in px, yq is a polynomial with zero constant

term. Hence the constant polynomial 1 R px, yq, and px, yq is a proper ideal. We

first show that px, yq is a prime ideal. Assume fg P px, yq for some f, g P krx, ys.
Then fg has a zero constant term. It follows that either f or g has a zero constant

term (otherwise the constant term of fg, as a product of two non-zero constant

terms, is non-zero). This shows that either f or g is an element in px, yq, hence

px, yq is a prime ideal. We then show that px, yq is a maximal ideal. Assume

px, yq � I � krx, ys. Then either I � px, yq or I contains some polynomial h with

a non-zero constant term. In the second possibility, we write h � h0 � c where c

is the constant term of h while h0 is the sum of all other terms in h. Since h P I
and h0 P px, yq � I, we know that c � h � h0 P I. However c is a unit in krx, ys,
hence I � krx, ys. We have proved that an intermediate ideal I is either px, yq or

krx, ys. Therefore px, yq is a maximal ideal.
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We now look at the ideal pxq. Clearly 1 R pxq, hence pxq is a proper ideal. We

first show pxq is a prime ideal. If fg P ppq for some f, g P krx, ys, then x � fg.

Hence either f or g has a factor x, which means either f P pxq or g P pxq. Hence

pxq is a prime ideal. Then we show that pxq is not a maximal ideal. Indeed, it is

clear that every polynomial in pxq is a multiple of x, hence has zero constant term.

It follows that pxq � px, yq. Since y is a polynomial in px, yq but not in pxq, we get

the strict inclusions pxq � px, yq � krx, ys, which shows that pxq is not maximal.

Solution 8.4. Cancellation law and “to contain is to divide”.

(1) By Proposition 8.13, there is an ideal J such that IJ � pγq is a non-zero principal

ideal. Multiply IJ1 � IJ2 on both sides by J . We find pγqJ1 � pγqJ2.

We show that J1 � J2. For any element α P J1, we know that γα P pγqJ1

hence γα P pγqJ2. By Exercise 8.2 (2), we know that every element in pγqJ2 can

be written as γβ for some β P J2. It follows that γα � γβ. Since γ � 0, we

have α � β P J2. This shows J1 � J2. By switching subscripts we can show that

J2 � J1 using the same argument. Hence J1 � J2.

(2) If I2 � 0, then I1 � 0, hence we can choose J to be any ideal in OK . If I2 � 0,

then by Proposition 8.13, there is an ideal I3 and γ � 0 such that I2I3 � pγq.
Hence we have I1I3 � I2I3 � pγq. We define J � tα P OK | γα P I1I3u.

We show that J is an ideal in OK . For any α1, α2 P J , we have γα1, γα2 P I1I3.

Since I1I3 is an ideal, we get γpα1 � α2q � γα1 � γα2 P I1I3. By the definition of

J , α1�α2 P J . On the other hand, for any α P J and any β P OK , since αγ P I1I3

and I1I3 is an ideal, we know that βαγ P I1I3. It follows that βα P J by the

definition of J . These two conditions prove J is an ideal in OK .

We claim that pγqJ � I1I3. First we show that pγqJ � I1I3. By Exercise 8.2 (2),

every element in pγqJ can be written as γα for some α P J . By the definition of

J , we have γα P I1I3. Hence pγqJ � I1I3. To show the other inclusion, assume we

have β P I1I3. Since I1I3 � pγq, we know β P pγq hence β � γα for some α P OK .

In fact, by the definition of J we actually have α P J . Hence β � γα P pγqJ ,

which shows that I1I3 � pγqJ . The mutual inclusions show that pγqJ � I1I3. It

follows that I1I3 � pγqJ � I2I3J . By Corollary 8.14 which we have proved in part

(1), we can cancel I3 on both sides and conclude I1 � I2J .
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