SOLUTIONS TO EXERCISE SHEET 8

Solution 8.1. Ezxamples of norms of ideals.

(1) Using the formula in Example 6.18, we have N(a) = a® —b*d. By Proposition 8.9,
N(I) = |[N(a)| = |a* — b?d]|.

(2) By Lemma 6.16, we have N(a) = a"N(1) = a™. (We can also do it by writing
down a matrix for L,, which is a diagonal matrix with a’s along the diagonal.) By
Proposition 8.9, N(I) = |[N(a)| = |a™|.

Solution 8.2. Fxamples of sums and products of ideals.

(1) We show IJ < I. Every element in I.J has the form a1b1 +asbs +- - -+ agby, for some
positive integer k, where a; € I, b; € J for each ¢+ = 1,2,--- k. Since a; € I and
b; € J < R, we have a;b; € I for each i. Hence their sum a1by +asby+---+agb, € 1.
We then show I < I + J. For every element a € I, we have a = a+0 € [ + J since
0 € J. Both claims are proved.

(2) We need to show mutual inclusions. First we show (a)l 2 {aa | a € I}. This
is clear because o € (a) and a € I imply aa € («)I. Then we show the other
inclusion («)I € {aa | a € I}. Every element in («) has the form ra for some
r € R. By the definition of the product of two ideals, every element in («)/ can
be written as a finite sum r aa; + roaas + -« - + rraay for some positive integer
k, where ri,--- ,ry € R and ay,---,ax € I. Since I is an ideal, we know that
r;a; € I for each @ = 1,--- k, hence v = ria; + -+ + rpap € I. Therefore
riaay + rocag + -+ + rpaag = a(ria; + - - -+ rpag) = ay has the required form.

(3) We need to show mutual inclusions. First we show (a)(8) 2 (o). Every element
in (af) has the form raf for some r € R. since ra € () and € (§), we know
that raf € (a)(B). We then show the other inclusion («)(8) < (). By part (2)
we know ()(8) = {a | v € (B)}, hence every element in (a)() has the form a~y
for some v € (). We write 7 = (4§ for some § € R, then oy = af8d € (af3).

(4) We need to show two directions. First we show every element in (x,y) is a poly-
nomial with zero constant term. Since (z,y) is defined to be the sum of ideals
(x) + (y), every element in it has the form zf + yg for some f, g € k[z,y]. Every
term in the expansion of = f + yg has either a factor of x (if it comes from x f) or a
factor of y (if it comes from yg). Hence the expansion of xf + yg is a polynomial
with zero constant term. Now we show that every polynomial h € k|z,y] with
zero constant term is an element in (z,y). Since h has zero constant term, every
non-zero term in h has a factor x or y (possibly both). Now we write h as the sum
of two polynomials h = hy + hy as follows: if a term in h is divisible by = but not

divisible by y, then it becomes a term in hq; if it is divisible by y but not by =,
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then it becomes a term in ho; if it is divisible by both x and y, then it becomes a
term in either hy or hy (the one of your choice). Now we realise that every term
in h, is divisible by z, hence we can write h; = = f for some f € k[z,y]. Similarly
every term in hy is divisible by y, hence we can write hy = yg for some g € k[z, y].
Therefore h = zf +yg e (z) + (y) = (z,y).

Solution 8.3. Ezxamples of prime and mazximal ideals.

(1)

It is clear that (p) is a proper ideal since 1 ¢ (p). We first show (p) is a prime
ideal. If ab € (p) for some a,b € Z, then p | ab. Since p is a prime, p | a or p | b,
which means either a € (p) or b € (p). Hence (p) is a prime ideal. We then show
(p) is a maximal ideal. Assume there is an ideal I such that (p) € I < Z. Since
Z is a PID, I = (a) is a principal ideal generated by some a € Z. Then we have
(p) € (a) € Z, which implies that p € (a), hence a | p. It follows that a = £1 or
+p. In other words, I = (a) = (1) = Z or I = (a) = (p). Hence (p) is a maximal
ideal.

It is clear that (z) is a proper ideal since the constant polynomial 1 ¢ (). We
first show () is a prime ideal. If fg € (p) for some f, g € k[x], then z | fg. Hence
either f or g has a factor z, which means either f € (x) or g € (z). Hence () is a
prime ideal. We then show (z) is a maximal ideal. Assume there is an ideal I such
that (z) € I < k[z]. Since k[z] is a PID, I = (h) is a principal ideal generated
by some h € k[z]. Then we have (z) < (h) < k[z], which implies that = € (h),
hence h is a factor of x. It follows that h is a non-zero constant polynomial or
a non-zero constant multiple of x. Since every non-zero constant polynomial is a
unit in k[z], if h is a non-zero constant, then I = (h) = k|z]; if h is a non-zero
constant multiple of z, then I = (h) = (z). Hence (z) is a maximal ideal.

By Exercise 8.2 (4), every element in (x,y) is a polynomial with zero constant
term. Hence the constant polynomial 1 ¢ (x,y), and (z,y) is a proper ideal. We
first show that (x,y) is a prime ideal. Assume fg € (x,y) for some f,g € k|z,y].
Then fg has a zero constant term. It follows that either f or g has a zero constant
term (otherwise the constant term of fg, as a product of two non-zero constant
terms, is non-zero). This shows that either f or g is an element in (z,y), hence
(x,y) is a prime ideal. We then show that (x,y) is a maximal ideal. Assume
(x,y) < I < k|z,y]. Then either I = (x,y) or I contains some polynomial h with
a non-zero constant term. In the second possibility, we write h = hg + ¢ where ¢
is the constant term of h while hg is the sum of all other terms in h. Since h € I
and hg € (x,y) < I, we know that ¢ = h — hg € I. However ¢ is a unit in k[z, y],
hence I = k[x,y]. We have proved that an intermediate ideal [ is either (z,y) or

k|x,y]. Therefore (x,y) is a maximal ideal.
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We now look at the ideal (x). Clearly 1 ¢ (), hence (x) is a proper ideal. We
first show (x) is a prime ideal. If fg € (p) for some f, g € k[z,y], then = | fg.
Hence either f or g has a factor z, which means either f € (x) or g € (z). Hence
(x) is a prime ideal. Then we show that (x) is not a maximal ideal. Indeed, it is
clear that every polynomial in () is a multiple of z, hence has zero constant term.
It follows that (z) < (x,y). Since y is a polynomial in (x,y) but not in (z), we get
the strict inclusions (z) € (x,y) < k[, y]|, which shows that (x) is not maximal.

Solution 8.4. Cancellation law and “to contain is to divide”.

(1)

By Proposition 8.13, there is an ideal J such that IJ = () is a non-zero principal
ideal. Multiply I.J; = I.J5 on both sides by J. We find (v)J; = (7).

We show that J; € J;. For any element « € J;, we know that ya € (y)J
hence ya € (v)Jo. By Exercise 8.2 (2), we know that every element in ().J, can
be written as v for some g € Jy. It follows that ya« = y3. Since v # 0, we
have a = 8 € Jy. This shows J; € J,. By switching subscripts we can show that
Jo € J; using the same argument. Hence J; = Js.

If I, = 0, then I; = 0, hence we can choose J to be any ideal in Og. If Iy # 0,
then by Proposition 8.13, there is an ideal I3 and v # 0 such that I3 = (7).
Hence we have I113 € I113 = (). We define J = {a € Ok | ya € I113}.

We show that J is an ideal in Og. For any aq, as € J, we have yaq, yas € I115.
Since 1113 is an ideal, we get y(a; + @) = ya1 + yag € I113. By the definition of
J, a1 + as € J. On the other hand, for any a € J and any 8 € Ok, since ay € 113
and [;13 is an ideal, we know that Sa~vy € I113. It follows that Sa € J by the
definition of J. These two conditions prove J is an ideal in O-.

We claim that (y)J = I115. First we show that (v).J < I115. By Exercise 8.2 (2),
every element in (v)J can be written as ya for some « € J. By the definition of
J, we have ya € I1I3. Hence (v)J < I115. To show the other inclusion, assume we
have 8 € I 113. Since I113 < (), we know (3 € () hence 3 = vya for some a € Ok.
In fact, by the definition of J we actually have « € J. Hence § = ya € (v)J,
which shows that ;13 < (y).J. The mutual inclusions show that (v)J = I15. It
follows that ;I3 = (v)J = I213J. By Corollary 8.14 which we have proved in part
(1), we can cancel I3 on both sides and conclude I = I5J.
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