
Solutions to Exercise Sheet 9

Solution 9.1. Card games and non-card games.

(1) A diamond is convex assuming the four sides are all line segments (despite that

they look a little curved on any playing cards). All the other shapes are non-

convex.

(2) The shapes (ii), (iv) and (vi) are centrally symmetric. The other shapes are not.

Solution 9.2. Applications of Minkowski’s Theorem.

(1) D is centrally symmetric, convex and compact. Hence Corollary 9.12 applies.

If volpDq ¥ 4A, then D is guaranteed to contain a non-zero point in L. This

condition can be written as πr2 ¥ 4A. When r ¡ 0, it is equivalent to r ¥ �
4A
π

� 1
2 .

(2) S is centrally symmetric, convex and compact. Hence Corollary 9.12 applies. If

volpSq ¥ 4A, then S is guaranteed to contain a non-zero point in L. Note that

volpSq � 2r2, hence this condition becomes 2r2 ¥ 4A. When r ¡ 0, it is equivalent

to r ¥ p2Aq 1
2 .

Solution 9.3. Basic properties of ideal classes.

(1) The reflexivity is clear, as for any non-zero principal ideal pαq, we have pαqI �
pαqI, hence I � I. The symmetry is also easy. If I � J , then there exist non-zero

principal ideals pαq and pβq, such that pαqI � pβqJ . We switch the two sides and

write the equation as pβqJ � pαqI, then by definition we get J � I.

Now we prove the transitivity. By I1 � I2, we can find non-zero principal

ideals pα1q and pα2q, such that pα1qI1 � pα2qI2. By I2 � I3, we can find non-zero

principal ideals pβ2q and pβ3q, such that pβ2qI2 � pβ3qI3. We multiply both sides

of the first identity by pβ2q and get pα1qpβ2qI1 � pα2qpβ2qI2. By Exercise 8.2 (3),

we can rewrite it as pα1β2qI1 � pα2β2qI2. Similarly, we can multiply both sides of

the second identity by pα2q to get pα2qpβ2qI2 � pα2qpβ3qI3, which can be rewritten

as pα2β2qI2 � pα2β3qI3. Now we get pα1β2qI1 � pα2β2qI2 � pα2β3qI3. We need

to show that pα1β2q and pα2β3q are both non-zero principal ideals. Since α1 and

β2 are both non-zero complex numbers, their product α1β2 is also non-zero, hence

pα1β2q is also a non-zero principal ideal. For the same reason pα2β3q is a non-zero

principal ideal. Hence we conclude that I1 � I3.

(2) From I1 � I2, we know that for some non-zero principal ideals pα1q and pα2q,
we have pα1qI1 � pα2qI2. J1 � J2, we know that for some non-zero principal

ideals pβ1q and pβ2q, we have pβ1qJ1 � pβ2qJ2. We multiply the two identities

to get pα1qpβ1qI1J1 � pα2qpβ2qI2J2. By Exercise 8.2 (3), we can rewrite it as
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pα1β1qI1J1 � pα2β2qI2J2. For similar reasons as in part (1), both pα1β1q and

pα2β2q are non-zero principal ideals. Hence we have I1J1 � I2J2.

Solution 9.4. Volume of the fundamental domain for real quadratic fields.

(1) We prove that LI is a lattice of rank 2 in R2. By Proposition 7.9, assume α1, α2

is an integral basis for I, then we can write I � tm1α1 � m2α2 | m1,m2 P Zu.
We write α1 � a1 � b1

?
d and α2 � a2 � b2

?
d for some a1, b1, a2, b2 P Q. Let

e1 � pa1 � b1

?
d, a1 � b1

?
dq and e2 � pa2 � b2

?
d, a2 � b2

?
dq, then for every

α � m1α1 � m2α2 � pm1a1 � m2a2q � pm1b1 � m2b2q
?
d P I, the corresponding

point in LI is given by ppm1a1�m2a2q�pm1b1�m2b2q
?
d, pm1a1�m2a2q�pm1b1�

m2b2q
?
dq � m1pa1� b1

?
d, a1� b1

?
dq�m2pa2� b2

?
d, a2� b2

?
dq � m1e1�m2e2.

Hence LI � tm1e1 �m2e2 | m1,m2 P Zu is a rank 2 lattice in R2.

(2) We calculate TOK
. By Proposition 7.2, we can write OK � tm1ω1 � m2ω2 |

m1,m2 P Zu, where ω1 � 1, and ω2 �
?
d if d � 2 or 3 pmod 4q and 1

2
p1 �?

dq if

d � 1 pmod 4q.
When d � 2 or 3 pmod 4q, we have e1 � p1, 1q and e2 � p?d,�?dq. Hence

volpTOK
q �

����� det

�
1

?
d

1 �?d

� ����� �
����2

?
d
��� � 2

?
d � |∆K |

1
2 ,

where the last equality follows from Proposition 7.14.

When d � 1 pmod 4q, we have e1 � p1, 1q and e2 � p1
2
p1 � ?

dq, 1
2
p1 � ?

dqq.
Hence the volume of the fundamental domain is

volpTOK
q �

����� det

�
1 1

2
p1�?

dq
1 1

2
p1�?

dq

� ����� �
����?d��� � ?

d � |∆K |
1
2 ,

where the last equality still follows from Proposition 7.14.

(3) We calculate the volume of the fundamental domain TI in general. For an arbitrary

ideal I with an integral basis α1, α2, we can write α1 � a11ω1 � a21ω2 and α2 �
a12ω1 � a22ω2, as well as the transition matrix M � paijq, where aij P Z. For

simplicity, we write the points in LI corresponding to αi by pαi, α1iq for i � 1, 2.

Similarly, we write the points in LI corresponding to ωi by pωi, ω1iq for i � 1, 2.

Then they can be organised into the following matrix�
α1 α2

α11 α12

�
�
�
a11 a12

a21 a22

��
ω1 ω2

ω11 ω12

�
.

Taking determinants and absolute values on both sides, we get

volpTIq � |detM | volpTOK
q.

By Proposition 8.3 and part (2), we conclude that

volpTIq � NpIq |∆K |
1
2 .
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