SOLUTIONS TO EXERCISE SHEET 9

Solution 9.1. Card games and non-card games.

(1)

(2)

A diamond is convex assuming the four sides are all line segments (despite that
they look a little curved on any playing cards). All the other shapes are non-

convex.

The shapes (ii), (iv) and (vi) are centrally symmetric. The other shapes are not.

Solution 9.2. Applications of Minkowski’s Theorem.

(1)

(2)

D is centrally symmetric, convex and compact. Hence Corollary 9.12 applies.
If vol(D) = 4A, then D is guaranteed to contain a non-zero point in L. This

1
condition can be written as 7r? = 4A. When r > 0, it is equivalent to r > (%) 2,

S is centrally symmetric, convex and compact. Hence Corollary 9.12 applies. If
vol(S) = 4A, then S is guaranteed to contain a non-zero point in L. Note that
vol(S) = 2r?, hence this condition becomes 2r? > 4A. When r > 0, it is equivalent
to r = (24)7.

Solution 9.3. Basic properties of ideal classes.

(1)

The reflexivity is clear, as for any non-zero principal ideal (a), we have (a)l =
(a)I, hence I ~ I. The symmetry is also easy. If I ~ J, then there exist non-zero
principal ideals («) and (), such that (a)l = (5)J. We switch the two sides and
write the equation as (f)J = (a)!, then by definition we get J ~ I.

Now we prove the transitivity. By Iy ~ I3, we can find non-zero principal
ideals (aq) and (a), such that (aq)l; = (ag)ly. By I ~ I3, we can find non-zero
principal ideals (82) and (f3), such that (52)I> = (83)I3. We multiply both sides
of the first identity by (82) and get (a1)(B2)l1 = (aa)(52)I2. By Exercise 8.2 (3),
we can rewrite it as (a1 82)[1 = (agf3)ls. Similarly, we can multiply both sides of
the second identity by (az) to get (a2)(f2)l2 = (a2)(P3)I3, which can be rewritten
as (apf2)lo = (af3)l3. Now we get (a1f2)]1 = (a2f2)l2 = (af3)I3. We need
to show that (ay32) and (azf3) are both non-zero principal ideals. Since «; and
(o are both non-zero complex numbers, their product a; s is also non-zero, hence
(1 82) is also a non-zero principal ideal. For the same reason (asf3) is a non-zero
principal ideal. Hence we conclude that I; ~ I3.

From I; ~ I3, we know that for some non-zero principal ideals (a;) and (aw),
we have (a1)l; = (ag)ly. J; ~ Jy, we know that for some non-zero principal
ideals (1) and (52), we have (f1)J1 = (f2)Jo. We multiply the two identities

to get (aq)(B1)1J1 = (ao)(B2)l2Jo. By Exercise 8.2 (3), we can rewrite it as
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()17 = (agB2)IyJy. For similar reasons as in part (1), both (a;3;) and
(o B3) are non-zero principal ideals. Hence we have I1J; ~ Io.Js.

Solution 9.4. Volume of the fundamental domain for real quadratic fields.

(1) We prove that Lj is a lattice of rank 2 in R?. By Proposition 7.9, assume aq, oo
is an integral basis for I, then we can write I = {mja; + moas | my, mqg € Z}.
We write a; = a1 + bjv/d and ay = ay + bev/d for some ai,bi,as,b0 € Q. Let
e = (a1 + bivd,a; — blx/g) and ey = (ag + bov/d, as — bQ\/g), then for every
a = mioy + maay = (Mmyay + maag) + (maby + maby)v/d € I, the corresponding
point in L; is given by ((mya; +maas) + (myby +maby)Vd, (myay +maas) — (myby +
Maby)Vd) = my(ay +biVd, ay —bivVd) +ma(ag + bavd, ay — byv/d) = myiey +maes.
Hence L = {mye; + maey | my, my € Z} is a rank 2 lattice in R

(2) We calculate Tp,.. By Proposition 7.2, we can write Ox = {mjw; + mows |
mi, my € Z}, where w; = 1, and wp = Vd if d =2 or 3 (mod 4) and (1 + Vd) if
d=1 (mod 4).

When d =2 or 3 (mod 4), we have ¢; = (1,1) and ey = (v/d, —v/d). Hence

det (1 */&d — |-2vd| = 2vd = |a ],

)

where the last equality follows from Proposition 7.14.
When d = 1 (mod 4), we have e; = (1,1) and e, = (3(1 + Vd), 3(1 — Vd)).
Hence the volume of the fundamental domain is

1 3(1+Vd)\ | A
det(1 %(1_\/3)> —‘—\/g‘—\/g—|AK| ;

where the last equality still follows from Proposition 7.14.

VOI(T@K) =

vol (T@K ) =

(3) We calculate the volume of the fundamental domain 77 in general. For an arbitrary
ideal I with an integral basis aq, as, we can write a; = ajjw; + as1we and ag =
aipwi + agws, as well as the transition matrix M = (a;;), where a;; € Z. For
simplicity, we write the points in L; corresponding to a; by («y, ) for i = 1,2.
Similarly, we write the points in L; corresponding to w; by (w;,w}) for i = 1,2.
Then they can be organised into the following matrix

Qp gy a1 412 Wy W2
o o A g | \wi wh)’
Taking determinants and absolute values on both sides, we get
VOl(T[) = |det M| VO](T@K).

By Proposition 8.3 and part (2), we conclude that

1
vol(Ty) = N(I) |Ag]? .
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