Solutions to Exercise Sheet 9

Solution 9.1. Card games and non-card games.
(1) A diamond is convex assuming the four sides are all line segments (despite that they look a little curved on any playing cards). All the other shapes are nonconvex.
(2) The shapes (ii), (iv) and (vi) are centrally symmetric. The other shapes are not.

Solution 9.2. Applications of Minkowski's Theorem.
(1) D is centrally symmetric, convex and compact. Hence Corollary 9.12 applies. If $\operatorname{vol}(D) \geqslant 4 A$, then D is guaranteed to contain a non-zero point in L. This condition can be written as $\pi r^{2} \geqslant 4 A$. When $r>0$, it is equivalent to $r \geqslant\left(\frac{4 A}{\pi}\right)^{\frac{1}{2}}$.
(2) S is centrally symmetric, convex and compact. Hence Corollary 9.12 applies. If $\operatorname{vol}(S) \geqslant 4 A$, then S is guaranteed to contain a non-zero point in L. Note that $\operatorname{vol}(S)=2 r^{2}$, hence this condition becomes $2 r^{2} \geqslant 4 A$. When $r>0$, it is equivalent to $r \geqslant(2 A)^{\frac{1}{2}}$.

Solution 9.3. Basic properties of ideal classes.
(1) The reflexivity is clear, as for any non-zero principal ideal (α), we have $(\alpha) I=$ $(\alpha) I$, hence $I \sim I$. The symmetry is also easy. If $I \sim J$, then there exist non-zero principal ideals (α) and (β), such that $(\alpha) I=(\beta) J$. We switch the two sides and write the equation as $(\beta) J=(\alpha) I$, then by definition we get $J \sim I$.

Now we prove the transitivity. By $I_{1} \sim I_{2}$, we can find non-zero principal ideals $\left(\alpha_{1}\right)$ and $\left(\alpha_{2}\right)$, such that $\left(\alpha_{1}\right) I_{1}=\left(\alpha_{2}\right) I_{2}$. By $I_{2} \sim I_{3}$, we can find non-zero principal ideals $\left(\beta_{2}\right)$ and $\left(\beta_{3}\right)$, such that $\left(\beta_{2}\right) I_{2}=\left(\beta_{3}\right) I_{3}$. We multiply both sides of the first identity by $\left(\beta_{2}\right)$ and get $\left(\alpha_{1}\right)\left(\beta_{2}\right) I_{1}=\left(\alpha_{2}\right)\left(\beta_{2}\right) I_{2}$. By Exercise 8.2 (3), we can rewrite it as $\left(\alpha_{1} \beta_{2}\right) I_{1}=\left(\alpha_{2} \beta_{2}\right) I_{2}$. Similarly, we can multiply both sides of the second identity by $\left(\alpha_{2}\right)$ to get $\left(\alpha_{2}\right)\left(\beta_{2}\right) I_{2}=\left(\alpha_{2}\right)\left(\beta_{3}\right) I_{3}$, which can be rewritten as $\left(\alpha_{2} \beta_{2}\right) I_{2}=\left(\alpha_{2} \beta_{3}\right) I_{3}$. Now we get $\left(\alpha_{1} \beta_{2}\right) I_{1}=\left(\alpha_{2} \beta_{2}\right) I_{2}=\left(\alpha_{2} \beta_{3}\right) I_{3}$. We need to show that $\left(\alpha_{1} \beta_{2}\right)$ and $\left(\alpha_{2} \beta_{3}\right)$ are both non-zero principal ideals. Since α_{1} and β_{2} are both non-zero complex numbers, their product $\alpha_{1} \beta_{2}$ is also non-zero, hence $\left(\alpha_{1} \beta_{2}\right)$ is also a non-zero principal ideal. For the same reason $\left(\alpha_{2} \beta_{3}\right)$ is a non-zero principal ideal. Hence we conclude that $I_{1} \sim I_{3}$.
(2) From $I_{1} \sim I_{2}$, we know that for some non-zero principal ideals $\left(\alpha_{1}\right)$ and $\left(\alpha_{2}\right)$, we have $\left(\alpha_{1}\right) I_{1}=\left(\alpha_{2}\right) I_{2} . \quad J_{1} \sim J_{2}$, we know that for some non-zero principal ideals $\left(\beta_{1}\right)$ and $\left(\beta_{2}\right)$, we have $\left(\beta_{1}\right) J_{1}=\left(\beta_{2}\right) J_{2}$. We multiply the two identities to get $\left(\alpha_{1}\right)\left(\beta_{1}\right) I_{1} J_{1}=\left(\alpha_{2}\right)\left(\beta_{2}\right) I_{2} J_{2}$. By Exercise 8.2 (3), we can rewrite it as
$\left(\alpha_{1} \beta_{1}\right) I_{1} J_{1}=\left(\alpha_{2} \beta_{2}\right) I_{2} J_{2}$. For similar reasons as in part (1), both $\left(\alpha_{1} \beta_{1}\right)$ and $\left(\alpha_{2} \beta_{2}\right)$ are non-zero principal ideals. Hence we have $I_{1} J_{1} \sim I_{2} J_{2}$.

Solution 9.4. Volume of the fundamental domain for real quadratic fields.
(1) We prove that L_{I} is a lattice of rank 2 in \mathbb{R}^{2}. By Proposition 7.9, assume α_{1}, α_{2} is an integral basis for I, then we can write $I=\left\{m_{1} \alpha_{1}+m_{2} \alpha_{2} \mid m_{1}, m_{2} \in \mathbb{Z}\right\}$. We write $\alpha_{1}=a_{1}+b_{1} \sqrt{d}$ and $\alpha_{2}=a_{2}+b_{2} \sqrt{d}$ for some $a_{1}, b_{1}, a_{2}, b_{2} \in \mathbb{Q}$. Let $e_{1}=\left(a_{1}+b_{1} \sqrt{d}, a_{1}-b_{1} \sqrt{d}\right)$ and $e_{2}=\left(a_{2}+b_{2} \sqrt{d}, a_{2}-b_{2} \sqrt{d}\right)$, then for every $\alpha=m_{1} \alpha_{1}+m_{2} \alpha_{2}=\left(m_{1} a_{1}+m_{2} a_{2}\right)+\left(m_{1} b_{1}+m_{2} b_{2}\right) \sqrt{d} \in I$, the corresponding point in L_{I} is given by $\left(\left(m_{1} a_{1}+m_{2} a_{2}\right)+\left(m_{1} b_{1}+m_{2} b_{2}\right) \sqrt{d},\left(m_{1} a_{1}+m_{2} a_{2}\right)-\left(m_{1} b_{1}+\right.\right.$ $\left.\left.m_{2} b_{2}\right) \sqrt{d}\right)=m_{1}\left(a_{1}+b_{1} \sqrt{d}, a_{1}-b_{1} \sqrt{d}\right)+m_{2}\left(a_{2}+b_{2} \sqrt{d}, a_{2}-b_{2} \sqrt{d}\right)=m_{1} e_{1}+m_{2} e_{2}$. Hence $L_{I}=\left\{m_{1} e_{1}+m_{2} e_{2} \mid m_{1}, m_{2} \in \mathbb{Z}\right\}$ is a rank 2 lattice in \mathbb{R}^{2}.
(2) We calculate $T_{\mathcal{O}_{K}}$. By Proposition 7.2 , we can write $\mathcal{O}_{K}=\left\{m_{1} \omega_{1}+m_{2} \omega_{2} \mid\right.$ $\left.m_{1}, m_{2} \in \mathbb{Z}\right\}$, where $\omega_{1}=1$, and $\omega_{2}=\sqrt{d}$ if $d \equiv 2$ or $3(\bmod 4)$ and $\frac{1}{2}(1+\sqrt{d})$ if $d \equiv 1(\bmod 4)$.

When $d \equiv 2$ or $3(\bmod 4)$, we have $e_{1}=(1,1)$ and $e_{2}=(\sqrt{d},-\sqrt{d})$. Hence

$$
\operatorname{vol}\left(T_{\mathcal{O}_{K}}\right)=\left|\operatorname{det}\left(\begin{array}{cc}
1 & \sqrt{d} \\
1 & -\sqrt{d}
\end{array}\right)\right|=|-2 \sqrt{d}|=2 \sqrt{d}=\left|\Delta_{K}\right|^{\frac{1}{2}},
$$

where the last equality follows from Proposition 7.14.
When $d \equiv 1(\bmod 4)$, we have $e_{1}=(1,1)$ and $e_{2}=\left(\frac{1}{2}(1+\sqrt{d}), \frac{1}{2}(1-\sqrt{d})\right)$. Hence the volume of the fundamental domain is

$$
\operatorname{vol}\left(T_{\mathcal{O}_{K}}\right)=\left|\operatorname{det}\left(\begin{array}{cc}
1 & \frac{1}{2}(1+\sqrt{d}) \\
1 & \frac{1}{2}(1-\sqrt{d})
\end{array}\right)\right|=|-\sqrt{d}|=\sqrt{d}=\left|\Delta_{K}\right|^{\frac{1}{2}},
$$

where the last equality still follows from Proposition 7.14.
(3) We calculate the volume of the fundamental domain T_{I} in general. For an arbitrary ideal I with an integral basis α_{1}, α_{2}, we can write $\alpha_{1}=a_{11} \omega_{1}+a_{21} \omega_{2}$ and $\alpha_{2}=$ $a_{12} \omega_{1}+a_{22} \omega_{2}$, as well as the transition matrix $M=\left(a_{i j}\right)$, where $a_{i j} \in \mathbb{Z}$. For simplicity, we write the points in L_{I} corresponding to α_{i} by $\left(\alpha_{i}, \alpha_{i}^{\prime}\right)$ for $i=1,2$. Similarly, we write the points in L_{I} corresponding to ω_{i} by $\left(\omega_{i}, \omega_{i}^{\prime}\right)$ for $i=1,2$. Then they can be organised into the following matrix

$$
\left(\begin{array}{ll}
\alpha_{1} & \alpha_{2} \\
\alpha_{1}^{\prime} & \alpha_{2}^{\prime}
\end{array}\right)=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)\left(\begin{array}{ll}
\omega_{1} & \omega_{2} \\
\omega_{1}^{\prime} & \omega_{2}^{\prime}
\end{array}\right) .
$$

Taking determinants and absolute values on both sides, we get

$$
\operatorname{vol}\left(T_{I}\right)=|\operatorname{det} M| \operatorname{vol}\left(T_{\mathcal{O}_{K}}\right)
$$

By Proposition 8.3 and part (2), we conclude that

$$
\operatorname{vol}\left(T_{I}\right)=\underset{97}{N(I)}\left|\Delta_{K}\right|^{\frac{1}{2}} .
$$

