
Solutions to Exercise Sheet 10

Solution 10.1. Some computation of class numbers.

(1) We have d � 2, hence ∆K � 4d � 8, and MK � 1
2

?
8 � ?

2   2. Therefore every

ideal class contains an ideal of norm 1, which must be OK . It follows that hK � 1.

(2) We have d � 6, hence ∆K � 4d � 24, and MK � 1
2

?
24 � ?

6   3. Therefore

every ideal class contains an ideal of norm 1 or 2. An ideal of norm 1 must be

OK . By Proposition 10.10, since d � 1 pmod 4q, we have p2q � p2 and p is the

only ideal of norm 2. Therefore every ideal class contains OK or p.

It remains to determine whether OK and p belong to the same ideal class, or

equivalently, whether p is a principal ideal. Since p is the only ideal of norm 2, if

we can find a principal ideal pαq of norm 2, then p � pαq is a principal ideal. If

we assume α � a� b
?

6, then Nppαqq � |Npαq| � |a2 � 6b2|. Hence Nppαqq � 2 if

and only if a2� 6b2 � �2. We observe that a � 2 and b � 1 satisfy a2� 6b2 � �2.

Therefore the norm of the principal ideal p2�?
6q is 2. By the above analysis we

know that p � p2�?6q is a principal ideal, hence OK and p are in the same ideal

class. It follows that hK � 1.

(3) We have d � �13, hence ∆K � 4d � �52, and MK � 2
π

?
52   5. Therefore every

ideal class contains an ideal of norm 1, 2, 3 or 4. An ideal of norm 1 must be OK .

By Proposition 10.10, since d � 1 pmod 4q, we have p2q � p2 where p is the only

ideal of norm 2. By Proposition 10.11, since p �13
3
q � p �1

3
q � �1, p3q itself is a

prime ideal and there is no ideal of norm 3. By the proof of Theorem 10.7, every

ideal of norm 4 must be the product of some prime factors of the principal ideal

p4q. We realise that p4q � p2qp2q � p4, hence the only ideals which divide p4q are

pi for 0 ¤ i ¤ 4. Since Nppq � 2, by Lemma 10.2, the only one among them which

has norm 4 is p2 � p2q. In other words, the ideal of norm 4 is p2q. So we conclude

that every ideal class contains an ideal among OK , p and p2q.
It is clear that p2q is a principal ideal, hence is in the same ideal class as OK .

We claim that p is not a prime ideal. If p � pαq for some non-zero α P OK , we

assume α � a � b
?�13, then Nppαqq � |Npαq| � |a2 � 13b2|. On the other hand

Nppαqq � Nppq � 2, hence a2 � 13b2 � �2. It is clear that a2 � 13b2 � �2 has

no integer solutions, as the left-hand side is non-negative. It is also easy to see

that a2 � 13b2 � 2 has no integer solutions, since a2 ¤ 2 implies a2 � 0 or 1, and

13b2 ¤ 2 implies b2 � 0, which cannot add up to 2. We conclude that p is not a

principal ideal, hence it is not in the same ideal class as OK . Therefore hK � 2.

Solution 10.2. Fermats two square problem (revisited).
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(1) Since p � 1 pmod 4q, �1 is a quadratic residue modulo p. It follows that there

exists some u P Z, such that u2 � �1 pmod pq; or equivalently, u2�1 � 0 pmod pq.
(2) Assume the fundamental domain is T , then

volpT q �
�����det

�
1 0

u p

������ � p.

(3) The volume of the disk is volpDq � π � 3
2
p � 3

2
πp ¡ 4p � 4 volpT q. By Theorem

9.11, D contains at least one non-zero point in L, say pa, bq P L. Since a and b

are not simultaneously zero, we have a2 � b2 ¡ 0. On the other hand pa, bq P D
implies a2 � b2   3

2
p   2p.

(4) Since pa, bq P L, we have that pa, bq � m1p1, uq � m2p0, pq for some m1,m2 P Z.

Therefore a � m1 and b � m1u�m2p � ua� pm2 � ua pmod pq. It follows that

a2 � b2 � a2 � u2a2 � a2pu2 � 1q � 0 pmod pq, where the last congruence is due

to part (1).

(5) From part (4) we know that a2� b2 is a multiple of p, while within the range given

in part (3), the only multiple of p is p itself. Hence a2 � b2 � p.

Solution 10.3. Minkowski bound for real quadratic fields.

(1) The inequality |xy| ¤ 1
4
p|x| � |y|q2 is equivalent to 4|xy| ¤ p|x| � |y|q2, which

is further equivalent to p|x| � |y|q2 � 4|xy| ¥ 0. However the left-hand side is

|x|2 � 2|xy| � |y|2 � 4|xy| � |x|2 � 2|xy| � |y|2 � p|x| � |y|q2 ¥ 0. Hence the

inequality holds.

(2) By Proposition 9.14, the volume of the fundamental domain is volpTIq � NpIq|∆K | 12 .

On the other hand, the volume of the square S is given by volpSq � 2r2 �
4NpIq|∆K | 12 � 4 volpTIq. By Corollary 9.12, S contains at least one non-zero

point in LI .

(3) By part (2) and the definition of LI in Proposition 9.14, S contains a non-zero point

in LI , which is given by pa � b
?
d, a � b

?
dq for some non-zero α � a � b

?
d P I.

We write x � a � b
?
d and y � a � b

?
d, then by the definition of S we have

|x| � |y| ¤ r.

(4) For the α chosen in part (3), we have Npαq � a2�b2d � pa�b?dqpa�b?dq � xy.

Hence |Npαq| � |xy| ¤ 1
4
p|x| � |y|q2 ¤ 1

4
r2 � 1

2
NpIq|∆K | 12 , in which the first

inequality follows from part (1) and the second inequality follows from part (3).

(5) By Theorem 9.2, the ideal class C has an inverse in the ideal class group. We

denote this inverse ideal class by J where J is any representative. Then by part

(4) (which is Proposition 10.4), there exists a non-zero element β P J such that

|Npβq| ¤ 1
2
NpJq |∆K |

1
2 . Since we have pβq � J , there exists some ideal I such that
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IJ � pβq by Corollary 8.15. Since the ideal class containing pβq is the identity

element in the ideal class group, I and J are inverse of each other, hence I is an

ideal in C. It remains to show NpIq satisfies the given bound.

By Lemma 10.2 and Proposition 8.9, we have the following calculation

NpIqNpJq � NpIJq � Nppβqq � |Npβq| ¤ 1

2
NpJq |∆K |

1
2 .

Since NpJq is a positive integer by Proposition 8.3, we cancel it to get NpIq ¤
1
2
|∆K |

1
2 as required.
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