Solutions to Exercise Sheet 10

Solution 10.1. Some computation of class numbers.
(1) We have $d=2$, hence $\Delta_{K}=4 d=8$, and $M_{K}=\frac{1}{2} \sqrt{8}=\sqrt{2}<2$. Therefore every ideal class contains an ideal of norm 1 , which must be \mathcal{O}_{K}. It follows that $h_{K}=1$.
(2) We have $d=6$, hence $\Delta_{K}=4 d=24$, and $M_{K}=\frac{1}{2} \sqrt{24}=\sqrt{6}<3$. Therefore every ideal class contains an ideal of norm 1 or 2 . An ideal of norm 1 must be \mathcal{O}_{K}. By Proposition 10.10 , since $d \not \equiv 1(\bmod 4)$, we have $(2)=\mathfrak{p}^{2}$ and \mathfrak{p} is the only ideal of norm 2 . Therefore every ideal class contains \mathcal{O}_{K} or \mathfrak{p}.

It remains to determine whether \mathcal{O}_{K} and \mathfrak{p} belong to the same ideal class, or equivalently, whether \mathfrak{p} is a principal ideal. Since \mathfrak{p} is the only ideal of norm 2 , if we can find a principal ideal (α) of norm 2 , then $\mathfrak{p}=(\alpha)$ is a principal ideal. If we assume $\alpha=a+b \sqrt{6}$, then $N((\alpha))=|N(\alpha)|=\left|a^{2}-6 b^{2}\right|$. Hence $N((\alpha))=2$ if and only if $a^{2}-6 b^{2}= \pm 2$. We observe that $a=2$ and $b=1$ satisfy $a^{2}-6 b^{2}=-2$. Therefore the norm of the principal ideal $(2+\sqrt{6})$ is 2 . By the above analysis we know that $\mathfrak{p}=(2+\sqrt{6})$ is a principal ideal, hence \mathcal{O}_{K} and \mathfrak{p} are in the same ideal class. It follows that $h_{K}=1$.
(3) We have $d=-13$, hence $\Delta_{K}=4 d=-52$, and $M_{K}=\frac{2}{\pi} \sqrt{52}<5$. Therefore every ideal class contains an ideal of norm $1,2,3$ or 4 . An ideal of norm 1 must be \mathcal{O}_{K}. By Proposition 10.10 , since $d \not \equiv 1(\bmod 4)$, we have $(2)=\mathfrak{p}^{2}$ where \mathfrak{p} is the only ideal of norm 2. By Proposition 10.11, since $\left(\frac{-13}{3}\right)=\left(\frac{-1}{3}\right)=-1$, (3) itself is a prime ideal and there is no ideal of norm 3. By the proof of Theorem 10.7, every ideal of norm 4 must be the product of some prime factors of the principal ideal (4). We realise that $(4)=(2)(2)=\mathfrak{p}^{4}$, hence the only ideals which divide (4) are \mathfrak{p}^{i} for $0 \leqslant i \leqslant 4$. Since $N(\mathfrak{p})=2$, by Lemma 10.2 , the only one among them which has norm 4 is $\mathfrak{p}^{2}=(2)$. In other words, the ideal of norm 4 is (2). So we conclude that every ideal class contains an ideal among $\mathcal{O}_{K}, \mathfrak{p}$ and (2).

It is clear that (2) is a principal ideal, hence is in the same ideal class as \mathcal{O}_{K}. We claim that \mathfrak{p} is not a prime ideal. If $\mathfrak{p}=(\alpha)$ for some non-zero $\alpha \in \mathcal{O}_{K}$, we assume $\alpha=a+b \sqrt{-13}$, then $N((\alpha))=|N(\alpha)|=\left|a^{2}+13 b^{2}\right|$. On the other hand $N((\alpha))=N(\mathfrak{p})=2$, hence $a^{2}+13 b^{2}= \pm 2$. It is clear that $a^{2}+13 b^{2}=-2$ has no integer solutions, as the left-hand side is non-negative. It is also easy to see that $a^{2}+13 b^{2}=2$ has no integer solutions, since $a^{2} \leqslant 2$ implies $a^{2}=0$ or 1 , and $13 b^{2} \leqslant 2$ implies $b^{2}=0$, which cannot add up to 2 . We conclude that \mathfrak{p} is not a principal ideal, hence it is not in the same ideal class as \mathcal{O}_{K}. Therefore $h_{K}=2$.

Solution 10.2. Fermats two square problem (revisited).
(1) Since $p \equiv 1(\bmod 4),-1$ is a quadratic residue modulo p. It follows that there exists some $u \in \mathbb{Z}$, such that $u^{2} \equiv-1(\bmod p)$; or equivalently, $u^{2}+1 \equiv 0(\bmod p)$.
(2) Assume the fundamental domain is T, then

$$
\operatorname{vol}(T)=\left|\operatorname{det}\left(\begin{array}{ll}
1 & 0 \\
u & p
\end{array}\right)\right|=p
$$

(3) The volume of the disk is $\operatorname{vol}(D)=\pi \cdot \frac{3}{2} p=\frac{3}{2} \pi p>4 p=4 \operatorname{vol}(T)$. By Theorem $9.11, D$ contains at least one non-zero point in L, say $(a, b) \in L$. Since a and b are not simultaneously zero, we have $a^{2}+b^{2}>0$. On the other hand $(a, b) \in D$ implies $a^{2}+b^{2}<\frac{3}{2} p<2 p$.
(4) Since $(a, b) \in L$, we have that $(a, b)=m_{1}(1, u)+m_{2}(0, p)$ for some $m_{1}, m_{2} \in \mathbb{Z}$. Therefore $a=m_{1}$ and $b=m_{1} u+m_{2} p=u a+p m_{2} \equiv u a(\bmod p)$. It follows that $a^{2}+b^{2} \equiv a^{2}+u^{2} a^{2}=a^{2}\left(u^{2}+1\right) \equiv 0(\bmod p)$, where the last congruence is due to part (1).
(5) From part (4) we know that $a^{2}+b^{2}$ is a multiple of p, while within the range given in part (3), the only multiple of p is p itself. Hence $a^{2}+b^{2}=p$.

Solution 10.3. Minkowski bound for real quadratic fields.
(1) The inequality $|x y| \leqslant \frac{1}{4}(|x|+|y|)^{2}$ is equivalent to $4|x y| \leqslant(|x|+|y|)^{2}$, which is further equivalent to $(|x|+|y|)^{2}-4|x y| \geqslant 0$. However the left-hand side is $|x|^{2}+2|x y|+|y|^{2}-4|x y|=|x|^{2}-2|x y|+|y|^{2}=(|x|-|y|)^{2} \geqslant 0$. Hence the inequality holds.
(2) By Proposition 9.14, the volume of the fundamental domain is $\operatorname{vol}\left(T_{I}\right)=N(I)\left|\Delta_{K}\right|^{\frac{1}{2}}$. On the other hand, the volume of the square S is given by $\operatorname{vol}(S)=2 r^{2}=$ $4 N(I)\left|\Delta_{K}\right|^{\frac{1}{2}}=4 \operatorname{vol}\left(T_{I}\right) . \quad$ By Corollary $9.12, S$ contains at least one non-zero point in L_{I}.
(3) By part (2) and the definition of L_{I} in Proposition 9.14, S contains a non-zero point in L_{I}, which is given by $(a+b \sqrt{d}, a-b \sqrt{d})$ for some non-zero $\alpha=a+b \sqrt{d} \in I$. We write $x=a+b \sqrt{d}$ and $y=a-b \sqrt{d}$, then by the definition of S we have $|x|+|y| \leqslant r$.
(4) For the α chosen in part (3), we have $N(\alpha)=a^{2}-b^{2} d=(a+b \sqrt{d})(a-b \sqrt{d})=x y$. Hence $|N(\alpha)|=|x y| \leqslant \frac{1}{4}(|x|+|y|)^{2} \leqslant \frac{1}{4} r^{2}=\frac{1}{2} N(I)\left|\Delta_{K}\right|^{\frac{1}{2}}$, in which the first inequality follows from part (1) and the second inequality follows from part (3).
(5) By Theorem 9.2, the ideal class \mathcal{C} has an inverse in the ideal class group. We denote this inverse ideal class by \bar{J} where J is any representative. Then by part (4) (which is Proposition 10.4), there exists a non-zero element $\beta \in J$ such that $|N(\beta)| \leqslant \frac{1}{2} N(J)\left|\Delta_{K}\right|^{\frac{1}{2}}$. Since we have $(\beta) \subseteq J$, there exists some ideal I such that
$I J=(\beta)$ by Corollary 8.15 . Since the ideal class containing (β) is the identity element in the ideal class group, \bar{I} and \bar{J} are inverse of each other, hence I is an ideal in \mathcal{C}. It remains to show $N(I)$ satisfies the given bound.

By Lemma 10.2 and Proposition 8.9, we have the following calculation

$$
N(I) N(J)=N(I J)=N((\beta))=|N(\beta)| \leqslant \frac{1}{2} N(J)\left|\Delta_{K}\right|^{\frac{1}{2}} .
$$

Since $N(J)$ is a positive integer by Proposition 8.3, we cancel it to get $N(I) \leqslant$ $\frac{1}{2}\left|\Delta_{K}\right|^{\frac{1}{2}}$ as required.

