Solution 10.1. Some computation of class numbers.

- (1) We have d = 2, hence $\Delta_K = 4d = 8$, and $M_K = \frac{1}{2}\sqrt{8} = \sqrt{2} < 2$. Therefore every ideal class contains an ideal of norm 1, which must be \mathcal{O}_K . It follows that $h_K = 1$.
- (2) We have d = 6, hence $\Delta_K = 4d = 24$, and $M_K = \frac{1}{2}\sqrt{24} = \sqrt{6} < 3$. Therefore every ideal class contains an ideal of norm 1 or 2. An ideal of norm 1 must be \mathcal{O}_K . By Proposition 10.10, since $d \neq 1 \pmod{4}$, we have $(2) = \mathfrak{p}^2$ and \mathfrak{p} is the only ideal of norm 2. Therefore every ideal class contains \mathcal{O}_K or \mathfrak{p} .

It remains to determine whether \mathcal{O}_K and \mathfrak{p} belong to the same ideal class, or equivalently, whether \mathfrak{p} is a principal ideal. Since \mathfrak{p} is the only ideal of norm 2, if we can find a principal ideal (α) of norm 2, then $\mathfrak{p} = (\alpha)$ is a principal ideal. If we assume $\alpha = a + b\sqrt{6}$, then $N((\alpha)) = |N(\alpha)| = |a^2 - 6b^2|$. Hence $N((\alpha)) = 2$ if and only if $a^2 - 6b^2 = \pm 2$. We observe that a = 2 and b = 1 satisfy $a^2 - 6b^2 = -2$. Therefore the norm of the principal ideal $(2 + \sqrt{6})$ is 2. By the above analysis we know that $\mathfrak{p} = (2 + \sqrt{6})$ is a principal ideal, hence \mathcal{O}_K and \mathfrak{p} are in the same ideal class. It follows that $h_K = 1$.

(3) We have d = -13, hence $\Delta_K = 4d = -52$, and $M_K = \frac{2}{\pi}\sqrt{52} < 5$. Therefore every ideal class contains an ideal of norm 1, 2, 3 or 4. An ideal of norm 1 must be \mathcal{O}_K . By Proposition 10.10, since $d \neq 1 \pmod{4}$, we have $(2) = \mathfrak{p}^2$ where \mathfrak{p} is the only ideal of norm 2. By Proposition 10.11, since $\left(\frac{-13}{3}\right) = \left(\frac{-1}{3}\right) = -1$, (3) itself is a prime ideal and there is no ideal of norm 3. By the proof of Theorem 10.7, every ideal of norm 4 must be the product of some prime factors of the principal ideal (4). We realise that $(4) = (2)(2) = \mathfrak{p}^4$, hence the only ideals which divide (4) are \mathfrak{p}^i for $0 \leq i \leq 4$. Since $N(\mathfrak{p}) = 2$, by Lemma 10.2, the only one among them which has norm 4 is $\mathfrak{p}^2 = (2)$. In other words, the ideal of norm 4 is (2). So we conclude that every ideal class contains an ideal among \mathcal{O}_K , \mathfrak{p} and (2).

It is clear that (2) is a principal ideal, hence is in the same ideal class as \mathcal{O}_K . We claim that \mathfrak{p} is not a prime ideal. If $\mathfrak{p} = (\alpha)$ for some non-zero $\alpha \in \mathcal{O}_K$, we assume $\alpha = a + b\sqrt{-13}$, then $N((\alpha)) = |N(\alpha)| = |a^2 + 13b^2|$. On the other hand $N((\alpha)) = N(\mathfrak{p}) = 2$, hence $a^2 + 13b^2 = \pm 2$. It is clear that $a^2 + 13b^2 = -2$ has no integer solutions, as the left-hand side is non-negative. It is also easy to see that $a^2 + 13b^2 = 2$ has no integer solutions, since $a^2 \leq 2$ implies $a^2 = 0$ or 1, and $13b^2 \leq 2$ implies $b^2 = 0$, which cannot add up to 2. We conclude that \mathfrak{p} is not a principal ideal, hence it is not in the same ideal class as \mathcal{O}_K . Therefore $h_K = 2$.

Solution 10.2. Fermats two square problem (revisited).

- (1) Since $p \equiv 1 \pmod{4}$, -1 is a quadratic residue modulo p. It follows that there exists some $u \in \mathbb{Z}$, such that $u^2 \equiv -1 \pmod{p}$; or equivalently, $u^2 + 1 \equiv 0 \pmod{p}$.
- (2) Assume the fundamental domain is T, then

$$\operatorname{vol}(T) = \left| \det \begin{pmatrix} 1 & 0 \\ u & p \end{pmatrix} \right| = p.$$

- (3) The volume of the disk is $\operatorname{vol}(D) = \pi \cdot \frac{3}{2}p = \frac{3}{2}\pi p > 4p = 4\operatorname{vol}(T)$. By Theorem 9.11, D contains at least one non-zero point in L, say $(a, b) \in L$. Since a and b are not simultaneously zero, we have $a^2 + b^2 > 0$. On the other hand $(a, b) \in D$ implies $a^2 + b^2 < \frac{3}{2}p < 2p$.
- (4) Since $(a, b) \in L$, we have that $(a, b) = m_1(1, u) + m_2(0, p)$ for some $m_1, m_2 \in \mathbb{Z}$. Therefore $a = m_1$ and $b = m_1 u + m_2 p = ua + pm_2 \equiv ua \pmod{p}$. It follows that $a^2 + b^2 \equiv a^2 + u^2 a^2 = a^2(u^2 + 1) \equiv 0 \pmod{p}$, where the last congruence is due to part (1).
- (5) From part (4) we know that $a^2 + b^2$ is a multiple of p, while within the range given in part (3), the only multiple of p is p itself. Hence $a^2 + b^2 = p$.

Solution 10.3. Minkowski bound for real quadratic fields.

- (1) The inequality $|xy| \leq \frac{1}{4}(|x|+|y|)^2$ is equivalent to $4|xy| \leq (|x|+|y|)^2$, which is further equivalent to $(|x| + |y|)^2 - 4|xy| \ge 0$. However the left-hand side is $|x|^{2} + 2|xy| + |y|^{2} - 4|xy| = |x|^{2} - 2|xy| + |y|^{2} = (|x| - |y|)^{2} \ge 0$. Hence the inequality holds.
- (2) By Proposition 9.14, the volume of the fundamental domain is $\operatorname{vol}(T_I) = N(I) |\Delta_K|^{\frac{1}{2}}$. On the other hand, the volume of the square S is given by $vol(S) = 2r^2 =$ $4N(I)|\Delta_K|^{\frac{1}{2}} = 4 \operatorname{vol}(T_I)$. By Corollary 9.12, S contains at least one non-zero point in L_I .
- (3) By part (2) and the definition of L_I in Proposition 9.14, S contains a non-zero point in L_I , which is given by $(a + b\sqrt{d}, a - b\sqrt{d})$ for some non-zero $\alpha = a + b\sqrt{d} \in I$. We write $x = a + b\sqrt{d}$ and $y = a - b\sqrt{d}$, then by the definition of S we have $|x| + |y| \leq r.$
- (4) For the α chosen in part (3), we have $N(\alpha) = a^2 b^2 d = (a + b\sqrt{d})(a b\sqrt{d}) = xy$. Hence $|N(\alpha)| = |xy| \leq \frac{1}{4}(|x| + |y|)^2 \leq \frac{1}{4}r^2 = \frac{1}{2}N(I)|\Delta_K|^{\frac{1}{2}}$, in which the first inequality follows from part (1) and the second inequality follows from part (3).
- (5) By Theorem 9.2, the ideal class \mathcal{C} has an inverse in the ideal class group. We denote this inverse ideal class by \overline{J} where J is any representative. Then by part (4) (which is Proposition 10.4), there exists a non-zero element $\beta \in J$ such that $|N(\beta)| \leq \frac{1}{2}N(J) |\Delta_K|^{\frac{1}{2}}$. Since we have $(\beta) \subseteq J$, there exists some ideal I such that 106

 $IJ = (\beta)$ by Corollary 8.15. Since the ideal class containing (β) is the identity element in the ideal class group, \overline{I} and \overline{J} are inverse of each other, hence I is an ideal in \mathcal{C} . It remains to show N(I) satisfies the given bound.

By Lemma 10.2 and Proposition 8.9, we have the following calculation

$$N(I)N(J) = N(IJ) = N((\beta)) = |N(\beta)| \leq \frac{1}{2}N(J) |\Delta_K|^{\frac{1}{2}}.$$

Since N(J) is a positive integer by Proposition 8.3, we cancel it to get $N(I) \leq \frac{1}{2} |\Delta_K|^{\frac{1}{2}}$ as required.