SOLUTIONS TO EXERCISE SHEET 10

Solution 10.1. Some computation of class numbers.

(1) We have d = 2, hence Ag = 4d = 8, and Mg = 1/8 = v/2 < 2. Therefore every
ideal class contains an ideal of norm 1, which must be O. It follows that hyx = 1.

(2) We have d = 6, hence A = 4d = 24, and Mg = %\/T = /6 < 3. Therefore
every ideal class contains an ideal of norm 1 or 2. An ideal of norm 1 must be
Ox. By Proposition 10.10, since d # 1 (mod 4), we have (2) = p? and p is the
only ideal of norm 2. Therefore every ideal class contains O or p.

It remains to determine whether Ok and p belong to the same ideal class, or
equivalently, whether p is a principal ideal. Since p is the only ideal of norm 2, if
we can find a principal ideal («) of norm 2, then p = («) is a principal ideal. If
we assume o = a + by/6, then N((a)) = |[N(a)| = |a® — 6b%|. Hence N((a)) = 2 if
and only if a? — 60> = +2. We observe that a = 2 and b = 1 satisfy a® — 6b> = —2.
Therefore the norm of the principal ideal (2 + /6) is 2. By the above analysis we
know that p = (2 +4/6) is a principal ideal, hence O and p are in the same ideal
class. It follows that hx = 1.

(3) We have d = —13, hence A = 4d = —52, and Mg = 21/52 < 5. Therefore every
ideal class contains an ideal of norm 1, 2, 3 or 4. An ideal of norm 1 must be O.
By Proposition 10.10, since d # 1 (mod 4), we have (2) = p* where p is the only
ideal of norm 2. By Proposition 10.11, since (=2) = (5-) = —1, (3) itself is a
prime ideal and there is no ideal of norm 3. By the proof of Theorem 10.7, every
ideal of norm 4 must be the product of some prime factors of the principal ideal
(4). We realise that (4) = (2)(2) = p*, hence the only ideals which divide (4) are
p’ for 0 < i < 4. Since N(p) = 2, by Lemma 10.2, the only one among them which
has norm 4 is p? = (2). In other words, the ideal of norm 4 is (2). So we conclude
that every ideal class contains an ideal among O, p and (2).

It is clear that (2) is a principal ideal, hence is in the same ideal class as Ok.
We claim that p is not a prime ideal. If p = («) for some non-zero a € Ok, we
assume « = a + bv/—13, then N((a)) = |[N(a)| = |a? 4+ 13b%]. On the other hand
N((«)) = N(p) = 2, hence a? + 13b* = +2. It is clear that a* + 130> = —2 has
no integer solutions, as the left-hand side is non-negative. It is also easy to see
that a? + 13b? = 2 has no integer solutions, since a? < 2 implies a®> = 0 or 1, and
13b? < 2 implies b? = 0, which cannot add up to 2. We conclude that p is not a
principal ideal, hence it is not in the same ideal class as Og. Therefore hx = 2.

Solution 10.2. Fermats two square problem (revisited).
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(1) Since p = 1 (mod 4), —1 is a quadratic residue modulo p. It follows that there
exists some u € Z, such that u*> = —1 (mod p); or equivalently, u?+1 =0 (mod p).

(2) Assume the fundamental domain is 7', then

det (1 O)‘
u p

(3) The volume of the disk is vol(D) = 7 - 2p = 37p > 4p = 4vol(T). By Theorem
9.11, D contains at least one non-zero point in L, say (a,b) € L. Since a and b

vol(T) = p.

are not simultaneously zero, we have a® + b* > 0. On the other hand (a,b) € D
implies a® + b* < 2p < 2p.

(4) Since (a,b) € L, we have that (a,b) = my(1,u) + mo(0,p) for some my, my € Z.
Therefore a = my and b = myu + map = ua + pmy = ua (mod p). It follows that
a4+ b* = a* + v?a® = a*(u®* + 1) = 0 (mod p), where the last congruence is due
to part (1).

(5) From part (4) we know that a® +b* is a multiple of p, while within the range given
in part (3), the only multiple of p is p itself. Hence a* + b* = p.

Solution 10.3. Minkowski bound for real quadratic fields.

(1) The inequality |zy| < (|| + |y|)* is equivalent to 4|zy| < (|z| + |y[)?, which
is further equivalent to (|z] + |y|)* — 4]zy| = 0. However the left-hand side is
o + 20zy| + [y* — 4oyl = |2 = 20zy] + [y]* = (2] — [y))* = 0. Hence the
inequality holds.

(2) By Proposition 9.14, the volume of the fundamental domain is vol(T}) = N(I)|Ax]|z.
On the other hand, the volume of the square S is given by vol(S) = 2r? =
AN(I)|Ak|z = 4vol(T}). By Corollary 9.12, S contains at least one non-zero
point in Lj.

(3) By part (2) and the definition of L; in Proposition 9.14, S contains a non-zero point
in Ly, which is given by (a + bv/d,a — bv/d) for some non-zero o = a + bv/d € I.
We write = a + bv/d and y = a — bv/d, then by the definition of S we have
] + Jy| < 7.

(4) For the a chosen in part (3), we have N(a) = a®> —b*d = (a+bVd)(a—bVd) = zy.
Hence |N(a)| = |oy| < L(|z| + |y))? < 12 = LN(I)|Ag|2, in which the first
inequality follows from part (1) and the second inequality follows from part (3).

(5) By Theorem 9.2, the ideal class C has an inverse in the ideal class group. We
denote this inverse ideal class by J where J is any representative. Then by part
(4) (which is Proposition 10.4), there exists a non-zero element 5 € J such that

IN(B)| < IN(J) |AK|%. Since we have () < J, there exists some ideal I such that
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IJ = () by Corollary 8.15. Since the ideal class containing (() is the identity
element in the ideal class group, I and J are inverse of each other, hence I is an
ideal in C. It remains to show N(I) satisfies the given bound.
By Lemma 10.2 and Proposition 8.9, we have the following calculation
1 1
N(N(T) = N(J) = N((8)) = IN(B)| < GN () [Ax|* .
Since N(J) is a positive integer by Proposition 8.3, we cancel it to get N(I) <
1
5 |Ak|? as required.
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