Math 19 Calculus Winter 2007 Instructor: Geir Helleloid
Final Exam
Friday, March 24

Name: \qquad
I agree to abide by the honor code:
Signature:

- You have 3 hours (8:30-11:30).
- No notes, books, or calculators are permitted.
- You must show all work to receive credit!
- Please check your solutions carefully.

1. \qquad (/50 points)
2. \qquad (/20 points)
3. \qquad (/20 points)
4. \qquad (/20 points)
5. \qquad (/20 points)
6. \qquad (/20 points)
7. ___ (/10 points)

Total. (/160 points)

1. (a) (10 points) Let

$$
y=\frac{2}{x-1}-\frac{1}{\sqrt{x}}
$$

Find $d y / d x$.
(b) (10 points) Let

$$
y=(\sin x)^{\cos x} .
$$

Find $d y / d x$. Your answer should be a function of x only.
(c) (10 points) Let

$$
y=\sqrt{\tan \left(x^{2}\right)}
$$

Find $d y / d x$.
(d) (10 points) Find the equation of the tangent line to the curve

$$
e^{x^{2}}+e^{y^{2}}=2 e
$$

at the point $(-1,1)$.
(e) (10 points) Let

$$
y=\frac{(2 x+1)^{4} \sin \left(x^{2}\right)}{(\ln x) \sqrt{3 x-1}}
$$

Find $\frac{d y}{d x}$. Your answer should be a function of x only.
2. (20 points) Let

$$
f(x)=\ln \left(x^{2}-1\right)
$$

(a) (10 points) You must show all your work, but please write your final answers in the box.

The domain of $f(x)$ is:
$f(x)$ is increasing on:
$f(x)$ is decreasing on:
$f(x)$ has local maxima at: \qquad
$f(x)$ has local minima at:
$f(x)$ is concave up on:
$f(x)$ is concave down on:
(b) (4 points) Compute the following four limits.

$$
\lim _{x \rightarrow \infty} \ln \left(x^{2}-1\right)
$$

$$
\lim _{x \rightarrow-\infty} \ln \left(x^{2}-1\right)
$$

$$
\lim _{x \rightarrow 1^{+}} \ln \left(x^{2}-1\right)
$$

$$
\lim _{x \rightarrow-1^{-}} \ln \left(x^{2}-1\right)
$$

(c) (1 point) List all vertical and horizontal asymptotes of $y=\ln \left(x^{2}-1\right)$.
(d) (5 points) Using your answers from parts (a) and (b), sketch a graph of

$$
f(x)=\ln \left(x^{2}-1\right) .
$$

Even if your answers in parts (a) and (b) are wrong, if your sketch correctly uses those answers, you may earn partial credit.
3. (20 points) A particle is moving along the curve $x^{2}-4 x y-y^{2}=$ -5 . Given that the x-coordinate of the particle is changing at 3 units/second, how fast is the distance from the particle to the origin changing when the particle is at the point $(1,2)$? Hint: As an intermediate step, you should compute the value of $\frac{d y}{d t}$ when $x=1$ and $y=2$.
4. (20 points) A balloon is rising at a constant speed of $1 \mathrm{~m} / \mathrm{sec}$. A girl is cycling along a straight road at a speed of $2 \mathrm{~m} / \mathrm{sec}$. When she passes under the balloon it is 3 m above her. How fast is the distance between the girl and the balloon increasing 2 seconds later?
5. (20 points) A Norman window consists of a rectangle surmounted by a semicircle, as shown. Given that the total area of the window is $A=8+2 \pi$, find the minimum possible perimeter of the window. (Please note the horizontal line between the rectangle and the semicircle does not count as part of the perimeter.) Hint: The total area has been carefully chosen so that the minimum perimeter occurs at a very simple value of r. If your optimal value of r is complicated, you have done something incorrectly.

6. (20 points) Suppose you have a cone with constant height H and constant radius R, and you want to put a smaller cone "upside down" inside the larger cone (see the picture). If h is the height of the smaller cone, what should h be to maximize the volume of the smaller cone? The optimal value of h will depend on H. Recall that the volume of a cone with base radius r and height h is given by the formula $V=\frac{1}{3} \pi r^{2} h$.

7. (10 points) For parts (a) and (b), compute the given limits, if they exist. If you assert that a limit does not exist, you need to justify your answer to get full credit.
(a) (5 points)

$$
\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}-3 x+1}-\sqrt{x^{2}+2}\right)
$$

(b) (5 points)

$$
\lim _{x \rightarrow 2} e^{\frac{1}{x-2}}
$$

