PRACTICE MIDTERM

1. True/False Questions. No explanation is needed.
(1) $f(x)=|x-2|$ is one-to-one.
(2) $\lim _{x \rightarrow 5}\left(\frac{2 x}{x-5}-\frac{10}{x-5}\right)=\lim _{x \rightarrow 5} \frac{2 x}{x-5}-\lim _{x \rightarrow 5} \frac{10}{x-5}$
(3) A function can have infinitely many horizontal asymptotes.
(4) If f is continuous on $[0,2]$, then f is differentiable on $[0,2]$.
(5) The n-th derivative of $f(x)=e^{2 x}$ is $2^{n} e^{2 x}$.
2. The graph of $f(x)$ is shown. Answer the following questions and explain your reasoning:
(1) What is the domain of f ?
(2) What is the range of f ?
(3) Is f one-to-one?
(4) Where is f not differentiable?
(5) Sketch the graph of $-f(-x)+1$ on the coordinate system.

3. Evaluate the following limits or show they do not exist.
(1) $\lim _{x \rightarrow-1} \frac{x^{2}-3 x-4}{x+1}$
(2) $\lim _{x \rightarrow \frac{1}{2}} \ln (\sin (\pi x))$
(3) $\lim _{x \rightarrow 2}\left(x^{2}-4\right)^{2} \sin \left(\frac{1}{x-2}\right)$
(4) $\lim _{x \rightarrow \infty} \frac{3-x}{x^{2}-3 x+2}$
(5) $\lim _{x \rightarrow 0} f(x)$ where

$$
f(x)= \begin{cases}e^{x} & \text { if } x<0, \\ 0 & \text { if } x=0, \\ \tan ^{2} x+1 & \text { if } x>0\end{cases}
$$

4. Let $g(t)=\frac{t+3}{t-1}$.
(1) Find the equation(s) of all vertical asymptote(s) of g.
(2) Find the equation(s) of all horizontal asymptotes of g.
(3) Find $g^{-1}(t)$.
5. Show there exists a number a between $\left[0, \frac{\pi}{2}\right]$ such that the graph of $x^{2}-\sin x$ has a horizontal tangent line at a.
6. Using the limit definition of the derivative, compute the derivative of $f(x)=2 \sqrt{x}$. What is the equation of the tangent line to the curve when $x=1$?
7. Find the derivatives of the following functions:
(1) $f(x)=x^{5}-x^{3 / 4}+1$
(2) $f(x)=x \ln x$
(3) $f(x)=\sin \left(2 e^{x}\right)$
(4) $f(x)=\frac{x^{2}-1}{x^{2}+1}$
(5) $f(x)=\ln \left(\frac{\sqrt{x} \cot x}{e^{x}}\right)$
(6) $f(x)=|x|$
8. The displacement (in centimeters) of a particle moving back and forth along a straight line is given by the equation of motion $s=2^{t}+t^{3}+1$ where t is measured in seconds.
(1) Find the average velocity of the particle during [1, 3].
(2) Find the velocity of the particle at $t=1$.
(3) Find the acceleration of the particle at $t=1$.
9. The figure shows the graphs of f, f^{\prime} and $f^{\prime \prime}$. Identify each curve and explain your choices.

10. Sketch a possible graph of $f(x)$ which satisfies all the conditions:
(i) $f(0)=1$, (ii) $\lim _{x \rightarrow-\infty} f(x)=0$, (iii) $f^{\prime}(0)=1$, (iv) f is increasing on $[-1,1]$,
(v) f is concave downward on $(-\infty,-1)$, (vi) f is concave upward on $(0,1]$,
(vii) $\lim _{x \rightarrow 3^{-}} f(x)=5, \quad$ (viii) $\lim _{x \rightarrow 3^{+}} f(x)=2$, (ix) f is decreasing on $[3, \infty$),
(x) $\lim _{x \rightarrow \infty}^{x \rightarrow 3} f(x)=-\infty$.
