Homework 1- Solutions

Homework scores are out of 30 points. Ten problems were graded each worth 3 points. The graded problems from this homework set are 2 and 34 from section 1.1, 12 from section 1.2, 6, 20 , and 48 from section $1.3,30$ from section 1.5, and 22 , 40 , and 56 from section 1.6.

Please check that your solutions are correct on the ungraded problems.

Section 1.1

2.

(a) The point $(-4,-2)$ is on the graph of f, so $f(-4)=-2$. The point $(3,4)$ is on the graph of g, so $g(3)=4$.
(b) We are looking for the values of x for which the y-values are equal. The y-values for f and g are equal at the points $(-2,1)$ and $(2,2)$, so the desired values of x are -2 and 2 .
(c) $f(x)=-1$ is equivalent to $y=-1$. When $y=-1$, we have $x=-3$ and $x=4$.
(d) As x increases from 0 to $4, y$ decreases from 3 to -1 . Thus, f is decreasing on the interval $[0,4]$.
(e) The domain of f consists of all x-values on the graph of f. For this function, the domain is $-4 \leq x \leq 4$, or $[-4,4]$. The range of f consists of all y-values on the graph of f. For this function, the range is $-2 \leq y \leq 3$, or $[-2,3]$.
(f) The domain of g is $[-4,3]$ and the range is $[0.5,4]$.
8.

No, the curve is not the graph of a function since for $x=0, \pm 1$, and ± 2, there are infinitely many points on the curve.
34.
$h(x)=\sqrt{4-x^{2}}$. Now $y=\sqrt{4-x^{2}} \Rightarrow y^{2}=4-x^{2} \quad \Leftrightarrow x^{2}+y^{2}=4$, so the graph is the top half of a circle of radius 2 with center at the origin. The domain is $\left\{x \mid 4-x^{2} \geq 0\right\}=\left\{x \mid 4 \geq x^{2}\right\}=\{x|2 \geq|x|\}=[-2,2]$. From the graph,
 the range is $0 \leq y \leq 2$, or $[0,2]$.
44.
42. $f(x)= \begin{cases}3-\frac{1}{2} x & \text { if } x \leq 2 \\ 2 x-5 & \text { if } x>2\end{cases}$

The domain is \mathbb{R}.

Section 1.2

4.

(a) The graph of $y=3 x$ is a line (choice G).
(b) $y=3^{x}$ is an exponential function (choice f).
(c) $y=x^{3}$ is an odd polynomial function or power function (choice F).
(d) $y=\sqrt[3]{x}=x^{1 / 3}$ is a root function (choice g).
12.
(a)

(b) The slope of -4 means that for each increase of 1 dollar for a rental space, the number of spaces rented decreases by 4 . The y-intercept of 200 is the number of spaces that would be occupied if there were no charge for each space. The x-intercept of 50 is the smallest rental fee that results in no spaces rented.

Section 1.3

4.

6.

The graph of $y=f(x)=\sqrt{3 x-x^{2}}$ has been shifted 2 units to the right and stretched vertically by a factor of 2 .
Thus, a function describing the graph is

$$
y=2 f(x-2)=2 \sqrt{3(x-2)-(x-2)^{2}}=2 \sqrt{3 x-6-\left(x^{2}-4 x+4\right)}=2 \sqrt{-x^{2}+7 x-10}
$$

16.

. $y=1 /(x-4)$: Start with the graph of $y=1 / x$ and shift 4 units to the right.

20. . $y=1+\sqrt[3]{x-1}:$ Start with the graph of $y=\sqrt[3]{x}$, shift 1 unit to the right, and then shift 1 unit upward.

36.
a) $f \circ g=\frac{\sin (2 x)}{1+\sin (2 x)}$

The domain of $\sin (2 x)$ is \mathbb{R} so the numerator and denominators are defined everywhere.
The function is not defined when the $1+\sin (2 x)=0 \Rightarrow \sin (2 x)=-1 \Rightarrow$
$2 x=3 \pi n / 4 \Rightarrow x=3 \pi n / 8$ where n is an integer.
The domain of $f \circ g$ is all real numbers except $\{x=3 \pi n / 8$ where n is an integer $\}$.
b) $g \circ f=\sin \left(\frac{2 x}{1+x}\right)$

Again $\sin (x)$ is defined everywhere so we only need to check the function $\frac{2 x}{1+x}$.
This function is defined everywhere except $x=-1$. Thus the domain of $g \circ f$ is
$\mathbb{R} \backslash\{x=-1\}$
c) $f \circ f=\frac{\frac{x}{1+x}}{1+\frac{x}{1+x}}=\frac{x}{1+x+x}=\frac{x}{1+2 x}$

This function is defined everywhere except where $1+2 x=0 \Rightarrow x=-1 / 2$.
The domain of $f \circ f$ is $\mathbb{R} \backslash\{x=-1 / 2\}$
d) $g \circ g=\sin (2 \sin (2 x))$

Since $\sin (x)$ is defined on \mathbb{R} then this function is also defined on \mathbb{R}.
46.

$$
\text { Let } g(t)=\tan t \text { and } f(t)=\frac{t}{1+t} . \text { Then }(f \circ g)(t)=f(g(t))=f(\tan t)=\frac{\tan t}{1+\tan t}=u(t)
$$

48.

Let $h(x)=|x|, g(x)=2+x$, and $f(x)=\sqrt[8]{x}$. Then
$(f \circ g \circ h)(x)=f(g(h(x)))=f(g(|x|))=f(2+|x|)=\sqrt[8]{2+|x|}=H(x)$.

Section 1.5

18.

(a) This reflection consists of first reflecting the graph about the x-axis (giving the graph with equation $y=-e^{x}$) and then shifting this graph $2 \cdot 4=8$ units upward. So the equation is $y=-e^{x}+8$.
(b) This reflection consists of first reflecting the graph about the y-axis (giving the graph with equation $y=e^{-x}$) and then shifting this graph $2 \cdot 2=4$ units to the right. So the equation is $y=e^{-(x-4)}$.
20.
(a) The sine and exponential functions have domain \mathbb{R}, so $g(t)=\sin \left(e^{-t}\right)$ also has domain \mathbb{R}.
(b) The function $g(t)=\sqrt{1-2^{t}}$ has domain $\left\{t \mid 1-2^{t} \geq 0\right\}=\left\{t \mid 2^{t} \leq 1\right\}=\{t \mid t \leq 0\}=(-\infty, 0]$.
30.
(a) Three hours represents 6 doubling periods (one doubling period is 30 minutes). $500 \cdot 2^{6}=32,000$
(b) In t hours, there will be $2 t$ doubling periods. The initial population is 500 , so the population y at time t is $y=500 \cdot 2^{2 t}$.
(c) $t=\frac{40}{60}=\frac{2}{3} \Rightarrow y=500 \cdot 2^{2(2 / 3)} \approx 1260$
(d) We graph $y_{1}=500 \cdot 2^{2 t}$ and $y_{2}=100,000$. The two curves intersect at $t \approx 3.82$, so the population reaches 100,000 in about 3.82 hours.

Section 1.6

22.

$$
\begin{aligned}
& y=f(x)=\frac{4 x-1}{2 x+3} \Rightarrow y(2 x+3)=4 x-1 \Rightarrow 2 x y+3 y=4 x-1 \Rightarrow 3 y+1=4 x-2 x y \Rightarrow \\
& 3 y+1=(4-2 y) x \Rightarrow x=\frac{3 y+1}{4-2 y} . \text { Interchange } x \text { and } y: y=\frac{3 x+1}{4-2 x} . \text { So } f^{-1}(x)=\frac{3 x+1}{4-2 x} .
\end{aligned}
$$

28.

$y=f(x)=2-e^{x} \Rightarrow e^{x}=2-y \Rightarrow x=\ln (2-y)$. Interchange x and $y: y=\ln (2-x)$. So $f^{-1}(x)=\ln (2-x)$. From the graph, we see that f and f^{-1} are reflections about the line $y=x$.

30.

Reflect the graph of f about the line $y=x$.

40. $\quad \ln (a+b)+\ln (a-b)-2 \ln (c)$
$=\ln ((a+b)(a-b))-2 \ln (c)$
$=\ln ((a+b)(a-b))-\ln \left(c^{2}\right)$
$=\ln \left(\frac{(a+b)(a-b)}{c^{2}}\right)$
$=\ln \left(\frac{a^{2}-b^{c^{2}}}{c^{2}}\right)$
56.
(a) For $f(x)=\ln (2+\ln x)$, we must have $2+\ln x>0 \Rightarrow \ln x>-2 \Rightarrow x>e^{-2}$. Thus, the domain of f is $\left(e^{-2}, \infty\right)$.
(b) $y=f(x)=\ln (2+\ln x) \Rightarrow e^{y}=2+\ln x \Rightarrow \ln x=e^{y}-2 \Rightarrow x=e^{e^{y}-2}$. Interchange x and $y: y=e^{e^{x}-2}$. So $f^{-1}(x)=e^{e^{x}-2}$. The domain of f^{-1}, as well as the range of f, is \mathbb{R}.

