Homework 5-Solutions

Homework scores are out of 30 points.
Please check that your solutions are correct on the ungraded problems.

Section 3.5

2. (a) $\frac{d}{d x}(\cos x+\sqrt{y})=\frac{d}{d x}(5) \Rightarrow-\sin x+\frac{1}{2} y^{-1 / 2} \cdot y^{\prime}=0 \Rightarrow \frac{1}{2 \sqrt{y}} \cdot y^{\prime}=\sin x \Rightarrow y^{\prime}=2 \sqrt{y} \sin x$
(b) $\cos x+\sqrt{y}=5 \Rightarrow \sqrt{y}=5-\cos x \Rightarrow y=(5-\cos x)^{2}$, so $y^{\prime}=2(5-\cos x)^{\prime}(\sin x)=2 \sin x(5-\cos x)$.
(c) From part (a), $y^{\prime}=2 \sqrt{y} \sin x=2 \sqrt{(5-\cos x)^{2}}=2(5-\cos x) \sin x \quad[$ since $5-\cos x>0]$.
3. $\tan (x-y)=\frac{y \cdot}{1+x^{2}} \Rightarrow\left(1+x^{2}\right) \tan (x-y)=y \Rightarrow\left(1+x^{2}\right) \sec ^{2}(x-y) \cdot\left(1-y^{\prime}\right)+\tan (x-y) \cdot 2 x=y^{\prime} \Rightarrow$

$$
\begin{aligned}
& \left(1+x^{2}\right) \sec ^{2}(x-y)-\left(1+x^{2}\right) \sec ^{2}(x-y) \cdot y^{\prime}+2 x \tan (x-y)=y^{\prime} \Rightarrow \\
& \left(1+x^{2}\right) \sec ^{2}(x-y)+2 x \tan (x-y)=\left[1+\left(1+x^{2}\right) \sec ^{2}(x-y)\right] \cdot y^{\prime} \Rightarrow \\
& y^{\prime}=\frac{\left(1+x^{2}\right) \sec ^{2}(x-y)+2 x \tan (x-y)}{1+\left(1+x^{2}\right) \sec ^{2}(x-y)}
\end{aligned}
$$

18. $\frac{d}{d x}[g(x)+x \sin g(x)]=\frac{d}{d x}\left(x^{2}\right) \Rightarrow g^{\prime}(x)+x \cos g(x) \cdot g^{\prime}(x)+\sin g(x) \cdot 1=2 x$. If $x=0$, we have $g^{\prime}(0)+0+\sin g(0)=2(0) \Rightarrow g^{\prime}(0)+\sin 0=0 \Rightarrow g^{\prime}(0)+0=0 \Rightarrow g^{\prime}(0)=0$.
19. $y^{2}\left(y^{2}-4\right)=x^{2}\left(x^{2}-5\right) \Rightarrow y^{4}-4 y^{2}=x^{4}-5 x^{2} \Rightarrow 4 y^{3} y^{\prime}-8 y y^{\prime}=4 x^{3}-10 x$.

When $x=0$ and $y=-2$, we have $-32 y^{\prime}+16 y^{\prime}=0 \Rightarrow-16 y^{\prime}=0 \Rightarrow y^{\prime}=0$, so an equation of the tangent line is, $y+2=0(x-0)$ or $y=-2$.
32. $\sqrt{x}+\sqrt{y}=1 \Rightarrow \frac{1}{2 \sqrt{x}}+\frac{y^{\prime}}{2 \sqrt{y}}=0 \Rightarrow y^{\prime}=-\frac{\sqrt{y}}{\sqrt{x}} \Rightarrow$

$$
\begin{aligned}
y^{\prime \prime} & =\frac{\sqrt{x}\left[\frac{1}{2 \sqrt{y}}\right] y^{\prime}-\sqrt{y}\left[\frac{1}{2 \sqrt{x}}\right]}{x}=-\frac{\sqrt{x}\left(\frac{1}{\sqrt{y}}\right)\left(-\frac{\sqrt{y}}{\sqrt{x}}\right)-\sqrt{y}\left(\frac{1}{\sqrt{x}}\right)}{2 x}=\frac{1+\frac{\sqrt{y}}{\sqrt{x}}}{2 x} \\
& =\frac{\sqrt{x}+\sqrt{y}}{2 x \sqrt{x}}=\frac{1}{2 x \sqrt{x}} \text { since } x \text { and } y \text { must satisfy the original equation, } \sqrt{x}+\sqrt{y}=1 .
\end{aligned}
$$

40. $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \Rightarrow \frac{2 x}{a^{2}}+\frac{2 y y^{\prime}}{b^{2}}=0 \Rightarrow y^{\prime}=-\frac{b^{2} x}{a^{2} y} \Rightarrow$ an equation of the tangent line at $\left(x_{0}, y_{0}\right)$ is $y-y_{0}=\frac{-b^{2} x_{0}}{a^{2} y_{0}}\left(x-x_{0}\right)$. Multiplying both sides by $\frac{y_{0}}{b^{2}}$ gives $\frac{y_{0} y}{b^{2}}-\frac{y_{0}^{2}}{b^{2}}=-\frac{x_{0} x}{a^{2}}+\frac{x_{0}^{2}}{a^{2}}$. Since $\left(x_{0}, y_{0}\right)$ lies on the ellipse, we have $\frac{x_{0} x}{a^{2}}+\frac{y_{0} y}{b^{2}}=\frac{x_{0}^{2}}{a^{2}}+\frac{y_{0}^{2}}{b^{2}}=1$.
41. $x^{2}+4 y^{2}=36 \Rightarrow 2 x+8 y y^{\prime}=0 \Rightarrow y^{\prime}=-\frac{x}{4 y}$. Let (a, b) be a point on $x^{2}+4 y^{2}=36$ whose tangent line passes through $(12,3)$. The tangent line is then $y-3=-\frac{a}{4 b}(x-12)$, so $b-3=-\frac{a}{4 b}(a-12)$. Multiplying both sides by $4 b$ gives $4 b^{2}-12 b=-a^{2}+12 a$, so $4 b^{2}+a^{2}=12(a+b)$. But $4 b^{2}+a^{2}=36$, so $36=12(a+b) \Rightarrow a+b=3 \Rightarrow$ $b=3-a$. Substituting $3-a$ for b into $a^{2}+4 b^{2}=36$ gives $a^{2}+4(3-a)^{2}=36 \Leftrightarrow a^{2}+36-24 a+4 a^{2}=36 \Leftrightarrow$ $5 a^{2}-24 a=0 \Leftrightarrow a(5 a-24)=0$, so $a=0$ or $a=\frac{24}{5}$. If $a=0, b=3-0=3$, and if $a=\frac{24}{5}, b=3-\frac{24}{5}=-\frac{9}{5}$. So the two points on the ellipse are $(0,3)$ and $\left(\frac{24}{5},-\frac{9}{5}\right)$. Using $y-3=-\frac{a}{4 b}(x-12)$ with $(a, b)=(0,3)$ gives us the tangent line $y-3=0$ or $y=3$. With $(a, b)=\left(\frac{24}{5},-\frac{9}{5}\right)$, we have $y-3=-\frac{24 / 5}{4(-9 / 5)}(x-12) \Leftrightarrow y-3=\frac{2}{3}(x-12) \Leftrightarrow y=\frac{2}{3} x-5$.
A graph of the ellipse and the tangent lines confirms our results.

Section 3.6

20. $F(\theta)=\arcsin \sqrt{\sin \theta}=\arcsin (\sin \theta)^{1 / 2} \Rightarrow$

$$
F^{\prime}(\theta)=\frac{1}{\sqrt{1-(\sqrt{\sin \theta})^{2}}} \cdot \frac{d}{d \theta}(\sin \theta)^{1 / 2}=\frac{1}{\sqrt{1-\sin \theta}} \cdot \frac{1}{2}(\sin \theta)^{-1 / 2} \cdot \cos \theta=\frac{\cos \theta}{2 \sqrt{1-\sin \theta} \sqrt{\sin \theta}}
$$

32. $\tan ^{-1}(x y)=1+x^{2} y \Rightarrow \frac{1}{1+x^{2} y^{2}}\left(x y^{\prime}+y \cdot 1\right)=0+x^{2} y^{\prime}+2 x y \Rightarrow$

$$
\begin{aligned}
& y^{\prime}\left(\frac{x}{1+x^{2} y^{2}}-x^{2}\right)=2 x y-\frac{y}{1+x^{2} y^{2}} \Rightarrow \\
& y^{\prime}=\frac{2 x y-\frac{y}{1+x^{2} y^{2}}}{\frac{x}{1+x^{2} y^{2}}-x^{2}}=\frac{2 x y\left(1+x^{2} y^{2}\right)-y}{x-x^{2}\left(1+x^{2} y^{2}\right)}=\frac{y\left(-1-2 x-2 x^{3} y^{2}\right)}{x\left(1-x-x^{3} y^{2}\right)} .
\end{aligned}
$$

38. Let $t=\frac{1+x^{2}}{1+2 x^{2}}$. As $x \rightarrow \infty, t=\frac{1+x^{2}}{1+2 x^{2}}=\frac{1 / x^{2}+1}{1 / x^{2}+2} \rightarrow \frac{1}{2}$.
$\lim _{x \rightarrow \infty} \arccos \left(\frac{1+x^{2}}{1+2 x^{2}}\right)=\lim _{t \rightarrow 1 / 2} \arccos t=\arccos \frac{1}{2}=\frac{\pi}{3}$.

Section 3.7

18. $y=\left[\ln \left(1+e^{x}\right)\right]^{2} \Rightarrow y^{\prime}=2\left[\ln \left(1+e^{x}\right)\right] \cdot \frac{1}{1+e^{x}} \cdot e^{x}=\frac{2 e^{x} \ln \left(1+e^{x}\right)}{1+e^{x}}$
19. $y=\frac{\ln x}{x^{2}} \Rightarrow y^{\prime}=\frac{x^{2}(1 / x)-(\ln x)(2 x)}{\left(x^{2}\right)^{2}}=\frac{x(1-2 \ln x)}{x^{4}}=\frac{1-2 \ln x}{x^{3}} \Rightarrow$

$$
y^{\prime \prime}=\frac{x^{3}(-2 / x)-(1-2 \ln x)\left(3 x^{2}\right)}{\left(x^{3}\right)^{2}}=\frac{x^{2}(-2-3+6 \ln x)}{x^{6}}=\frac{6 \ln x-5}{x^{4}}
$$

36. $y=\sqrt[4]{\frac{x^{2}+1}{x^{2}-1}} \Rightarrow \ln y=\frac{1}{4} \ln \left(x^{2}+1\right)-\frac{1}{4} \ln \left(x^{2}-1\right) \quad \Rightarrow \quad \frac{1}{y} y^{\prime}=\frac{1}{4} \cdot \frac{1}{x^{2}+1} \cdot 2 x-\frac{1}{4} \cdot \frac{1}{x^{2}-1} \cdot 2 x \Rightarrow$

$$
y^{\prime}=\sqrt[4]{\frac{x^{2}+1}{x^{2}-1}} \cdot \frac{1}{2}\left(\frac{x}{x^{2}+1}-\frac{x}{x^{2}-1}\right)=\frac{1}{2} \sqrt[4]{\frac{x^{2}+1}{x^{2}-1}}\left(\frac{-2 x}{x^{4}-1}\right)=\frac{x}{1-x^{4}} \sqrt[4]{\frac{x^{2}+1}{x^{2}-1}}
$$

42. $y=(\sin x)^{\ln x} \Rightarrow \ln y=\ln (\sin x)^{\ln x} \Rightarrow \ln y=\ln x \cdot \ln \sin x \Rightarrow \frac{1}{y} y^{\prime}=\ln x \cdot \frac{1}{\sin x} \cdot \cos x+\ln \sin x \cdot \frac{1}{x} \Rightarrow$

$$
y^{\prime}=y\left(\ln x \cdot \frac{\cos x}{\sin x}+\frac{\ln \sin x}{x}\right) \Rightarrow y^{\prime}=(\sin x)^{\ln x}\left(\ln x \cot x+\frac{\ln \sin x}{x}\right)
$$

44. $x^{y}=y^{x} \Rightarrow y \ln x=x \ln y \quad \Rightarrow \quad y \cdot \frac{1}{x}+(\ln x) \cdot y^{\prime}=x \cdot \frac{1}{y} \cdot y^{\prime}+\ln y \quad \Rightarrow \quad y^{\prime} \ln x-\frac{x}{y} y^{\prime}=\ln y-\frac{y}{x} \quad \Rightarrow$

$$
y^{\prime}=\frac{\ln y-y / x}{\ln x-x / y}
$$

Section 3.9

4. Let $A=\frac{N(1985)-N(1990)}{1985-1990}=\frac{17.04-19.33}{-5}=0.458$ and $B=\frac{N(1995)-N(1990)}{1995-1990}=$
$\frac{21.91-19.33}{5}=0.516$. Then $N^{\prime}(1990)=\lim _{t \rightarrow 1990} \frac{N(t)-N(1990)}{t-1990} \approx \frac{A+B}{2}=0.487 \mathrm{million} /$ year.
So $N(1989) \approx N(1990)+N^{\prime}(1990)(1989-1990) \approx 19.33+0.487(-1)=18.843$ million.
$N^{\prime}(2005) \approx \frac{N(2000)-N(2005)}{2000-2005}=\frac{24.70-27.68}{-5}=0.596$ million/year.
$N(2010) \approx N(2005)+N^{\prime}(2005)(2010-2005) \approx 27.68+0.596(5)=30.66$ million.
5. $g(x)=\sqrt[3]{1+x}=(1+x)^{1 / 3} \Rightarrow g^{\prime}(x)=\frac{1}{3}(1+x)^{-2 / 3}$, so $g(0)=1$ and $g^{\prime}(0)=\frac{1}{3}$. Therefore, $\sqrt[3]{1+x}=g(x) \approx g(0)+g^{\prime}(0)(x-0)=1+\frac{1}{3} x$. So $\sqrt[3]{0.95}=\sqrt[3]{1+(-0.05)} \approx 1+\frac{1}{3}(-0.05)=0.98 \overline{3}$, and $\sqrt[3]{1.1}=\sqrt[3]{1+0.1} \approx 1+\frac{1}{3}(0.1)=1.0 \overline{3}$.
6. To estimate $e^{-0.015}$, we'll find the linearization of $f(x)=e^{x}$ at $a=0$. Since $f^{\prime}(x)=e^{x}, f(0)=1$, and $f^{\prime}(0)=1$, we have $L(x)=1+1(x-0)=x+1$. Thus, $e^{x} \approx x+1$ when x is near 0 , so $e^{-0.015} \approx-0.015+1=0.985$.
28.(a) $A=\pi r^{2} \Rightarrow d A=2 \pi r d r$. When $r=24$ and $d r=0.2, d A=2 \pi(24)(0.2)=9.6 \pi$, so the maximum possible error in the calculated area of the disk is about $9.6 \pi \approx 30 \mathrm{~cm}^{2}$.
(b) Relative error $=\frac{\Delta A}{A} \approx \frac{d A}{A}=\frac{2 \pi r d r}{\pi r^{2}}=\frac{2 d r}{r}=\frac{2(0.2)}{24}=\frac{0.2}{12}=\frac{1}{60}=0.01 \overline{6}$.

Percentage error $=$ relative error $\times 100 \%=0.01 \overline{6} \times 100 \%=1 . \overline{6} \%$.
36. (a) $g^{\prime}(x)=\sqrt{x^{2}+5} \Rightarrow g^{\prime}(2)=\sqrt{9}=3 . g(1.95) \approx g(2)+g^{\prime}(2)(1.95-2)=-4+3(-0.05)=-4.15$. $g(2.05) \approx g(2)+g^{\prime}(2)(2.05-2)=-4+3(0.05)=-3.85$.
(b) The formula $g^{\prime}(x)=\sqrt{x^{2}+5}$ shows that $g^{\prime}(x)$ is positive and increasing. This means that the slopes of the tangent lines are positive and the tangents are getting steeper. So the tangent lines lie below the graph of g. Hence, the estimates in part (a) are too small.

