Homework 6 - Solutions

Homework scores are out of 30 points.
Please check that your solutions are correct on the ungraded problems.

Section 4.1

$\begin{array}{ll}\text { 2. (a) } A=\pi r^{2} \Rightarrow \frac{d A}{d t}=\frac{d A}{d r} \frac{d r}{d t}=2 \pi r \frac{d r}{d t} & \text { (b) } \frac{d A}{d t}=2 \pi r \frac{d r}{d t}=2 \pi(30 \mathrm{~m})(1 \mathrm{~m} / \mathrm{s})=60 \pi \mathrm{~m}^{2} / \mathrm{s}\end{array}$
12. (a) Given: at noon, ship A is 150 km west of ship B; ship A is sailing east at $35 \mathrm{~km} / \mathrm{h}$, and ship B is sailing north at $25 \mathrm{~km} / \mathrm{h}$. If we let t be time (in hours), x be the distance traveled by ship A (in km), and y be the distance traveled by ship B (in km), then we are given that $d x / d t=35 \mathrm{~km} / \mathrm{h}$ and $d y / d t=25 \mathrm{~km} / \mathrm{h}$.
(b) Unknown: the rate at which the distance between the ships is changing at 4:00 PM. If we let z be the distance between the ships, then we want to find $d z / d t$ when $t=4 \mathrm{~h}$.
(c)

(d) $z^{2}=(150-x)^{2}+y^{2} \Rightarrow 2 z \frac{d z}{d t}=2(150-x)\left(-\frac{d x}{d t}\right)+2 y \frac{d y}{d t}$
(e) At 4:00 PM, $x=4(35)=140$ and $y=4(25)=100 \Rightarrow z=\sqrt{(150-140)^{2}+100^{2}}=\sqrt{10,100}$.

$$
\text { So } \frac{d z}{d t}=\frac{1}{z}\left[(x-150) \frac{d x}{d t}+y \frac{d y}{d t}\right]=\frac{-10(35)+100(25)}{\sqrt{10,100}}=\frac{215}{\sqrt{101}} \approx 21.4 \mathrm{~km} / \mathrm{h}
$$

14. (a) Given: a man 6 ft tall walks away from a street light mounted on a 15 - ft -tall pole at a rate of $5 \mathrm{ft} / \mathrm{s}$. If we let t be time (in s) and x be the distance from the pole to the man (in ft), then we are given that $d x / d t=5 \mathrm{ft} / \mathrm{s}$.
(b) Unknown: the rate at which the tip of his shadow is moving when he is 40 ft from the pole. If we let y be the distance from the man to the tip of his
(c)
 shadow (in ft), then we want to find $\frac{d}{d t}(x+y)$ when $x=40 \mathrm{ft}$.
(d) By similar triangles, $\frac{15}{6}=\frac{x+y}{y} \Rightarrow 15 y=6 x+6 y \Rightarrow 9 y=6 x \Rightarrow y=\frac{2}{3} x$.
(e) The tip of the shadow moves at a rate of $\frac{d}{d t}(x+y)=\frac{d}{d t}\left(x+\frac{2}{3} x\right)=\frac{5}{3} \frac{d x}{d t}=\frac{5}{3}(5)=\frac{25}{3} \mathrm{ft} / \mathrm{s}$.
15. We are given that $\frac{d x}{d t}=24 \mathrm{ft} / \mathrm{s}$.
(a)

$$
\begin{aligned}
& y^{2}=(90-x)^{2}+90^{2} \Rightarrow 2 y \frac{d y}{d t}=2(90-x)\left(-\frac{d x}{d t}\right) . \text { When } x=45, \\
& y=\sqrt{45^{2}+90^{2}}=45 \sqrt{5}, \text { so } \frac{d y}{d t}=\frac{90-x}{y}\left(-\frac{d x}{d t}\right)=\frac{45}{45 \sqrt{5}}(-24)=-\frac{24}{\sqrt{5}},
\end{aligned}
$$

so the distance from second base is decreasing at a rate of $\frac{24}{\sqrt{5}} \approx 10.7 \mathrm{ft} / \mathrm{s}$.
(b) Due to the symmetric nature of the problem in part (a), we expect to get the same answer-and we do.

$$
z^{2}=x^{2}+90^{2} \Rightarrow 2 z \frac{d z}{d t}=2 x \frac{d x}{d t} . \text { When } x=45, z=45 \sqrt{5}, \text { so } \frac{d z}{d t}=\frac{45}{45 \sqrt{5}}(24)=\frac{24}{\sqrt{5}} \approx 10.7 \mathrm{ft} / \mathrm{s}
$$

20.

 $\frac{d x}{d t}=\frac{y}{x} \frac{d y}{d t}=-\frac{y}{x}$. When $x=8, y=\sqrt{65}$, so $\frac{d x}{d t}=-\frac{\sqrt{65}}{8}$. Thus, the boat approaches the dock at $\frac{\sqrt{65}}{8} \approx 1.01 \mathrm{~m} / \mathrm{s}$.
26. If $C=$ the rate at which water is pumped in, then $\frac{d V}{d t}=C-10,000$, where
$V=\frac{1}{3} \pi r^{2} h$ is the volume at time t. By similar triangles, $\frac{r}{2}=\frac{h}{6} \Rightarrow r=\frac{1}{3} h \Rightarrow$
$V=\frac{1}{3} \pi\left(\frac{1}{3} h\right)^{2} h=\frac{\pi}{27} h^{3} \Rightarrow \frac{d V}{d t}=\frac{\pi}{9} h^{2} \frac{d h}{d t}$. When $h=200 \mathrm{~cm}$,

$\frac{d h}{d t}=20 \mathrm{~cm} / \mathrm{min}$, so $C-10,000=\frac{\pi}{9}(200)^{2}(20) \Rightarrow C=10,000+\frac{800,000}{9} \pi \approx 289,253 \mathrm{~cm}^{3} / \mathrm{min}$.
38. We are given that $\frac{d \theta}{d t}=4(2 \pi)=8 \pi \mathrm{rad} / \mathrm{min} . x=3 \tan \theta \quad \Rightarrow$
$\frac{d x}{d t}=3 \sec ^{2} \theta \frac{d \theta}{d t}$. When $x=1, \tan \theta=\frac{1}{3}$, so $\sec ^{2} \theta=1+\left(\frac{1}{3}\right)^{2}=\frac{10}{9}$
and $\frac{d x}{d t}=3\left(\frac{10}{9}\right)(8 \pi)=\frac{80}{3} \pi \approx 83.8 \mathrm{~km} / \mathrm{min}$.

Section 4.2

6. There is no absolute maximum value; absolute minimum value is $g(4)=1$; local maximum values are $g(3)=4$ and $g(6)=3$; local minimum values are $g(2)=2$ and $g(4)=1$.
7. Absolute minimum at 1 , absolute maximum at 5 , local maximum at 2 , local minimum at 4

8. $f(x)= \begin{cases}4-x^{2} & \text { if }-2 \leq x<0 \\ 2 x-1 & \text { if } 0 \leq x \leq 2\end{cases}$

Abolute minimum $f(0)=-1$; no local minimim.
No absolute or local maximum.

38. $f(x)=x^{-2} \ln x \Rightarrow f^{\prime}(x)=x^{-2}(1 / x)+(\ln x)\left(-2 x^{-3}\right)=x^{-3}-2 x^{-3} \ln x=x^{-3}(1-2 \ln x)=\frac{1-2 \ln x}{x^{3}}$.
$f^{\prime}(x)=0 \Rightarrow 1-2 \ln x=0 \Rightarrow \ln x=\frac{1}{2} \Rightarrow x=e^{1 / 2} \approx 1.65 . f^{\prime}(0)$ does not exist, but 0 is not in the domain of f, so the only critical number is \sqrt{e}.
44. $f(x)=x^{3}-6 x^{2}+9 x+2, \quad[-1,4] . \quad f^{\prime}(x)=3 x^{2}-12 x+9=3\left(x^{2}-4 x+3\right)=3(x-1)(x-3)=0 \quad \Leftrightarrow \quad x=1,3$. $f(-1)=-14, f(1)=6, f(3)=2$, and $f(4)=6$. So $f(1)=f(4)=6$ is the absolute maximum value and $f(-1)=-14$ is the absolute minimum value.
(b) $f(x)=e^{x^{3}-x} \Rightarrow f^{\prime}(x)=e^{x^{3}-x}\left(3 x^{2}-1\right)$. So $f^{\prime}(x)=0$ on $[-1,0] \Rightarrow x=-\sqrt{1 / 3}$. $f(-1)=f(0)=1$ (minima) and $f(-\sqrt{1 / 3})=e^{-\sqrt{3} / 9+\sqrt{3} / 3}=e^{2 \sqrt{3} / 9}$ (maximum).

Section 4.3

8. (a) $f(x)=4 x^{3}+3 x^{2}-6 x+1 \Rightarrow f^{\prime}(x)=12 x^{2}+6 x-6=6\left(2 x^{2}+x-1\right)=6(2 x-1)(x+1)$. Thus, $f^{\prime}(x)>0 \Leftrightarrow x<-1$ or $x>\frac{1}{2}$ and $f^{\prime}(x)<0 \Leftrightarrow-1<x<\frac{1}{2}$. So f is increasing on $(-\infty,-1)$ and $\left(\frac{1}{2}, \infty\right)$ and f is decreasing on $\left(-1, \frac{1}{2}\right)$.
(b) f changes from increasing to decreasing at $x=-1$ and from decreasing to increasing at $x=\frac{1}{2}$. Thus, $f(-1)=6$ is a local maximum value and $f\left(\frac{1}{2}\right)=-\frac{3}{4}$ is a local minimum value.
(c) $f^{\prime \prime}(x)=24 x+6=6(4 x+1) . \quad f^{\prime \prime}(x)>0 \Leftrightarrow x>-\frac{1}{4}$ and $f^{\prime \prime}(x)<0 \Leftrightarrow x<-\frac{1}{4}$. Thus, f is concave upward on $\left(-\frac{1}{4}, \infty\right)$ and concave downward on $\left(-\infty,-\frac{1}{4}\right)$. There is an inflection point at $\left(-\frac{1}{4}, f\left(-\frac{1}{4}\right)\right)=\left(-\frac{1}{4}, \frac{21}{8}\right)$.
9. (a) $f(x)=x^{2} \ln x \Rightarrow f^{\prime}(x)=x^{2}(1 / x)+(\ln x)(2 x)=x+2 x \ln x=x(1+2 \ln x)$. The domain of f is $(0, \infty)$, so the sign of f^{\prime} is determined solely by the factor $1+2 \ln x . f^{\prime}(x)>0 \Leftrightarrow \ln x>-\frac{1}{2} \Leftrightarrow x>e^{-1 / 2}[\approx 0.61]$ and $f^{\prime}(x)<0 \Leftrightarrow 0<x<e^{-1 / 2}$. So f is increasing on $\left(e^{-1 / 2}, \infty\right)$ and f is decreasing on $\left(0, e^{-1 / 2}\right)$.
(b) f changes from decreasing to increasing at $x=e^{-1 / 2}$. Thus, $f\left(e^{-1 / 2}\right)=\left(e^{-1 / 2}\right)^{2} \ln \left(e^{-1 / 2}\right)=e^{-1}(-1 / 2)=-1 /(2 e)$ $[\approx-0.18]$ is a local minimum value.
(c) $f^{\prime}(x)=x(1+2 \ln x) \quad \Rightarrow \quad f^{\prime \prime}(x)=x(2 / x)+(1+2 \ln x) \cdot 1=2+1+2 \ln x=3+2 \ln x . \quad f^{\prime \prime}(x)>0 \quad \Leftrightarrow$ $3+2 \ln x>0 \Leftrightarrow \ln x>-3 / 2 \Leftrightarrow x>e^{-3 / 2}[\approx 0.22]$. Thus, f is concave upward on $\left(e^{-3 / 2}, \infty\right)$ and f is concave downward on $\left(0, e^{-3 / 2}\right) . f\left(e^{-3 / 2}\right)=\left(e^{-3 / 2}\right)^{2} \ln e^{-3 / 2}=e^{-3}(-3 / 2)=-3 /\left(2 e^{3}\right)[\approx-0.07]$. There is a point of inflection at $\left(e^{-3 / 2}, f\left(e^{-3 / 2}\right)\right)=\left(e^{-3 / 2},-3 /\left(2 e^{3}\right)\right)$.
10. $f(x)=\frac{x}{x^{2}+4} \Rightarrow f^{\prime}(x)=\frac{\left(x^{2}+4\right) \cdot 1-x(2 x)}{\left(x^{2}+4\right)^{2}}=\frac{4-x^{2}}{\left(x^{2}+4\right)^{2}}=\frac{(2+x)(2-x)}{\left(x^{2}+4\right)^{2}}$.

First Derivative Test: $f^{\prime}(x)>0 \Rightarrow-2<x<2$ and $f^{\prime}(x)<0 \quad \Rightarrow \quad x>2$ or $x<-2$. Since f^{\prime} changes from positive to negative at $x=2, f(2)=\frac{1}{4}$ is a local maximum value; and since f^{\prime} changes from negative to positive at $x=-2$, $f(-2)=-\frac{1}{4}$ is a local minimum value.
20. (a) $f(x)=x^{4}(x-1)^{3} \Rightarrow f^{\prime}(x)=x^{4} \cdot 3(x-1)^{2}+(x-1)^{3} \cdot 4 x^{3}=x^{3}(x-1)^{2}[3 x+4(x-1)]=x^{3}(x-1)^{2}(7 x-4)$

The critical numbers are 0,1 , and $\frac{4}{7}$.
(b) $f^{\prime \prime}(x)=3 x^{2}(x-1)^{2}(7 x-4)+x^{3} \cdot 2(x-1)(7 x-4)+x^{3}(x-1)^{2} \cdot 7$ $=x^{2}(x-1)[3(x-1)(7 x-4)+2 x(7 x-4)+7 x(x-1)]$

Now $f^{\prime \prime}(0)=f^{\prime \prime}(1)=0$, so the Second Derivative Test gives no information for $x=0$ or $x=1$. $f^{\prime \prime}\left(\frac{4}{7}\right)=\left(\frac{4}{7}\right)^{2}\left(\frac{4}{7}-1\right)\left[0+0+7\left(\frac{4}{7}\right)\left(\frac{4}{7}-1\right)\right]=\left(\frac{4}{7}\right)^{2}\left(-\frac{3}{7}\right)(4)\left(-\frac{3}{7}\right)>0$, so there is a local minimum at $x=\frac{4}{7}$.
(c) f^{\prime} is positive on $(-\infty, 0)$, negative on $\left(0, \frac{4}{7}\right)$, positive on $\left(\frac{4}{7}, 1\right)$, and positive on $(1, \infty)$. So f has a local maximum at $x=0$, a local minimum at $x=\frac{4}{7}$, and no local maximum or minimum at $x=1$.
72. $f(x)=c x+\frac{1}{x^{2}+3} \Rightarrow f^{\prime}(x)=c-\frac{2 x}{\left(x^{2}+3\right)^{2}} \cdot f^{\prime}(x)>0 \quad \Leftrightarrow \quad c>\frac{2 x}{\left(x^{2}+3\right)^{2}} \quad[$ call this $g(x)]$.

Now f^{\prime} is positive (and hence f increasing) if $c>g$, so we'll find the maximum value of g. $g^{\prime}(x)=\frac{\left(x^{2}+3\right)^{2} \cdot 2-2 x \cdot 2\left(x^{2}+3\right) \cdot 2 x}{\left[\left(x^{2}+3\right)^{2}\right]^{2}}=\frac{2\left(x^{2}+3\right)\left[\left(x^{2}+3\right)-4 x^{2}\right]}{\left(x^{2}+3\right)^{4}}=\frac{2\left(3-3 x^{2}\right)}{\left(x^{2}+3\right)^{3}}=\frac{6(1+x)(1-x)}{\left(x^{2}+3\right)^{3}}$. $g^{\prime}(x)=0 \Leftrightarrow x= \pm 1 . \quad g^{\prime}(x)>0$ on $(0,1)$ and $g^{\prime}(x)<0$ on $(1, \infty)$, so g is increasing on $(0,1)$ and decreasing on $(1, \infty)$, and hence g has a maximum value on $(0, \infty)$ of $g(1)=\frac{2}{16}=\frac{1}{8}$. Also since $g(x) \leq 0$ if $x \leq 0$, the maximum value of g on $(-\infty, \infty)$ is $\frac{1}{8}$. Thus, when $c>\frac{1}{8}, f$ is increasing. When $c=\frac{1}{8}, f^{\prime}(x)>0$ on $(-\infty, 1)$ and $(1, \infty)$, and hence f is increasing on these intervals. Since f is continuous, we may conclude that f is also increasing on $(-\infty, \infty)$ if $c=\frac{1}{8}$.

Therefore, f is increasing on $(-\infty, \infty)$ if $c \geq \frac{1}{8}$.

