Quiz 4 Solutions

1. (2 points) What is the derivative of $\arctan x$?

Solution.

$$
\frac{1}{1+x^{2}}
$$

2. (2 points) $y=\ln \left(\frac{x}{x+1}\right)$, find $\frac{d y}{d x}$.

Solution.

$$
y=\ln \left(\frac{x}{x+1}\right)=\ln x-\ln (x+1) .
$$

Therefore by differentiating both sides we can obtain:

$$
y^{\prime}=\frac{1}{x}-\frac{1}{x+1} .
$$

3. (2 points) Suppose x, y satisfy an equation $y^{2}+y=x$. Find the relation of y^{\prime}, x, y by differentiating both sides of the equation.
Solution. By implicit differentiation,

$$
\begin{array}{r}
\frac{d}{d x}\left(y^{2}+y\right)=\frac{d}{d x} x \\
2 y y^{\prime}+y^{\prime}=1 \\
y^{\prime}(2 y+1)=1 \\
y^{\prime}=\frac{1}{2 y+1}
\end{array}
$$

4. (2 points) Let x, y be described in previous problem. Find y^{\prime} at the point $(2,1)$.

Solution. Because from last problem we know $y^{\prime}=\frac{1}{2 y+1}$. Plug in $y=1$ and we can get $y^{\prime}=\frac{1}{3}$.
5. (2 points) Find the linear approximation $L(x)$ of $f(x)=\sqrt{x}$ at the point $(1,1)$. Solution. The linear approximation of $f(x)$ at a is $L(x)=f(a)+f^{\prime}(a)(x-a)$. Since it's given $a=1, f(x)=\sqrt{x}$, we can find $f^{\prime}(x)=\frac{1}{2 \sqrt{x}}$. Thus $f(a)=1, f^{\prime}(a)=\frac{1}{2}$, and

$$
L(x)=1+\frac{1}{2}(x-1)=\frac{1}{2}(x+1) .
$$

