Quiz 6 Solutions

1. (2 points) L'Hospital Rule states if f and g are differentiable and $g^{\prime}(x) \neq 0$ near a (except possibly at a). And suppose that

$$
\begin{aligned}
\lim _{x \rightarrow a} f(x) & =0 & \text { and } & \lim _{x \rightarrow a} g(x)
\end{aligned}=0 .
$$

Then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=
$$

Solution.

$$
\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

2. (2 points) Find

$$
\lim _{x \rightarrow 1} \frac{x^{3}-1}{x^{2}-1}
$$

Solution. First method:

$$
\lim _{x \rightarrow 1} \frac{x^{3}-1}{x^{2}-1}=\lim _{x \rightarrow 1} \frac{(x-1)\left(x^{2}+x+1\right)}{(x-1)(x+1)}=\lim _{x \rightarrow 1} \frac{x^{2}+x+1}{x+1}=\frac{3}{2} .
$$

Second method. Because it's of the type 0/0, we can use L'Hospital Rule.

$$
\lim _{x \rightarrow 1} \frac{x^{3}-1}{x^{2}-1}=\lim _{x \rightarrow 1} \frac{3 x^{2}}{2 x}=\frac{3}{2} .
$$

3. (2 points) Suppose f is a differentiable function on $[-2,2]$ and $f(-2)=1, f(2)=-3$. Prove there is a number c between -2 and 2 such that $f^{\prime}(c)=-1$.
Solution. Because f is a differentiable function on $[-2,2]$ and

$$
\frac{f(2)-f(-2)}{2-(-2)}=\frac{-4}{4}=-1,
$$

By the Mean Value Theorem there is a c between -2 and 2 such that $f^{\prime}(c)=-1$.
4. (4 points) Find the point on the line $x+y=6$ that is closest to the point $(6,8)$.

Solution. Suppose (x, y) is one the line $x+y=6$, then $y=6-x$. The distance between (x, y) and $(6,8)$ is

$$
\sqrt{(x-6)^{2}+(y-8)^{2}}=\sqrt{(x-6)^{2}+(6-x-8)^{2}}=\sqrt{(x-6)^{2}+(-2-x)^{2}}
$$

Because minimizing the distance is equivalent to minimizing the square of the distance, we can let $f(x)=(x-6)^{2}+(-2-x)^{2}$ and find the minimum of f.

$$
f^{\prime}(x)=2(x-6)+2(-2-x)(-1)=2 x-12+2 x+4=4 x-8
$$

If $f^{\prime}(x)=0, x=2, y=6-2=4$. $f^{\prime \prime}(x)=4>0$ for all x. By Second Derivative Test for Absolute Extrema, $(2,4)$ is the closet point to $(6,8)$.

