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Abstract. This paper studies deformations and birational maps between singular
moduli spaces of torsion free semistable sheaves with 2-divisible Mukai vectors on
K3 surfaces. It is showed that when the greatest common divisor of the rank and
the first Chern class is 2, two such moduli spaces of the same dimension can be
connected by deformations and birational maps.
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1. Introduction

Moduli spaces of semistable sheaves have been studied for a long time. Let X be
a K3 surface, and H ∈ Pic(X) be an ample line bundle. Let v ∈ Heven(X,Z) be
a fixed Mukai vector. Then there is a moduli space MX,H(v) which parameterizes
S-equivalence classes of semistable sheaves with respect to the polarization H, whose
Mukai vectors are v. These moduli spaces were first constructed by Gieseker [Gie77]
and Maruyama [Mar77, Mar78], and then studied by many other people.

When the polarization H is generic and the Mukai vector v is primitive, namely, the
greatest common divisor of all components of v is 1, every semistable sheaf must
be stable. In this case, Mukai [Muk84, Corollary 0.2] proved that the muduli space
MX,H(v) is a smooth irreducible holomorphic symplectic manifold.

It is an interesting problem to study the relation among these smooth moduli spaces.
There is a very nice theorem on irreducible holomorphic symplectic manifolds due
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to Huybrechts [Huy03, Theorem 2.5], which states that two birational irreducible
holomorphic symplectic manifolds are always deformation equivalent. Applying this
theorem, Yoshioka proved that [Yos01b, Theorem 8.1], if two such smooth moduli
spaces have the same dimension, then they are deformation equivalent. This is really
a nice result. However, it is not good news in the study of irreducible holomorphic
symplectic manifolds. The reason is, although we have lots of choices for the un-
derlying K3 surface, the generic polarization and the primitive Mukai vector, the
resulting moduli spaces provide only one deformation type of holomorphic symplectic
manifolds in every even dimension.

In this paper, we are trying to generalize Yoshioka’s result to the case of 2-divisible
Mukai vectors, which are Mukai vectors whose greatest common divisor among all
components is 2. More precisely, we will prove the following theorem:

Theorem 1.1. For i = 1 or 2, assume Xi is a projective K3 surface, vi = (ri, ci, ai)
is a primitive Mukai vector with ri > 0. Hi is a polarization on Xi which is generic
with respect to the Mukai vector 2vi. Assume further that ri and ci are coprime.
If dimMX1,H1(2v1) = dimMX2,H2(2v2), then MX1,H1(2v1) and MX2,H2(2v2) can be
connected by a sequence of deformations and birational maps.

Note that (ri, ci) = (1, 0) is allowed by the assumption of the theorem. In particular,
the case of (ri, ci, ai) = (1, 0,−1) is exactly the moduli space studied by O’Grady in
[O’G99], which admits a symplectic resolution.

The proof contains two main steps. In the first step, we will show that, for two such
moduli spaces MX1,H1(2v1) and MX2,H2(2v2), if they have the same dimension and
r1 = r2, then they are deformation equivalent. The idea of this part of proof is to use
the deformations of polarized K3 surfaces to deform both of the given moduli spaces
to a third moduli space of sheaves on an elliptic K3 surface with a rank 2 Picard
lattice. So that we know all moduli spaces in the same dimension with the same
rank parameter are deformation equivalent. This part of proof was motivated by a
similar argument in [HL97]. In the second step, we fix the dimension of the moduli
spaces and let the rank vary. For every possible value of the rank component of the
Mukai vector which is at least 8, we find one particular moduli space of sheaves on a
K3 surface with rank 1 Picard lattice, and prove it is birational to a certain moduli
space of sheaves of rank 2. The birational map between these two moduli spaces is
established via extensions by exceptional bundles, which were introduced in [Yos99b].
Combining the two steps, any two moduli spaces of sheaves of rank not equal to 4, as
stated in theorem 1.1, can be connected in at most three steps, namely a deformation
followed by a birational map, then by another deformation. For a technical reason,
we have to deal with the case of rank 4 seperately. To connect these remaining moduli
spaces, we just need to realize that, in every dimension we can find a moduli space of
sheaves of rank 4, which is birational to another moduli space of rank 14. So now all
moduli spaces of the same dimension are connected by deformations and birational
maps.
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However, due to the lack of a version of Huybrechts’s theorem [Huy03, Theorem
2.5] in the singular case, here we cannot get rid of the birational maps and get a
theorem as nice as Yoshioka’s [Yos01b, Theorem 8.1]. However, we hope a similar
result of deformation equivalence of singular moduli spaces in the same dimension is
still true for arbitrary non-primitive Mukai vectors. So we can formulate the following
conjecture:

Conjecture 1.2. Let m be a positive integer. For i = 1 or 2, assume Xi is a projective
K3 surface, vi = (ri, ci, ai) is a primitive positive Mukai vector, and Hi is a polar-
ization which is generic with respect to the Mukai vector mvi. If dimMX1,H1(mv1) =
dimMX2,H2(mv2), then MX1,H1(mv1) and MX2,H2(mv2) are deformation equivalent.

This paper is organized as follows: the two steps in the proof of theorem 1.1 will be
done in sections 2 and 3. In the proof of the deformation equivalence we will need
a result of local finiteness of walls in the ample cone (lemma 2.5), whose proof will
be given in the end of section 2. In section 3, for every r > 3 we will find a moduli
space of sheaves of rank 2r, and prove it is birational to a moduli space of sheaves
of rank 2. The remaining case for r = 2 will be treated at the end of the section
(propositions 3.9). We will omit the proofs because they will be identical with that
of the proposition 3.1. These two sections finish the proof of Theorem 1.1. Finally,
in section 4, we will prove that certain moduli spaces of pure torsion sheaves with
2-divisible Mukai vectors are birational to moduli spaces of sheaves of positive ranks.

After the first version of this paper was completed and posted on arXiv, conjecture
1.2 was proved in full generality by [Per11]. The author of [Per11] followed the
argument used in the discussion for 10 dimensional moduli spaces in [PR10]. One of
the main tools used in [Per11] is an isomorphism between two moduli spaces given by
a Fourier-Mukai transform, which was proved in [Yos01a, Theorem 3.18]. However,
the technique used in the present paper is very different from that in [Per11] and is
more elementary.

Acknowledgements: I would like to express my deep gratitude to my PhD advisor
Jun Li, for all his support and encouragement. I would also like to thank Kōta
Yoshioka for kindly answering my questions and pointing out references, and thank
Jason Lo for helpful discussions. I also appreciate the help of Daniel Huybrechts and
Manfred Lehn in the final stage of this work. Moreover, I would like to thank the
referee for carefully reading the previous version of the manuscript and suggesting
various improvements, which in particular leads to a few simplifications in section 3.

2. Deformation Equivalence

In this section, we will show that any two moduli spaces of sheaves on K3 surfaces
with the same dimension, rank and divisibility are deformation equivalent to each
other. This will be obtained by deforming the two moduli spaces to a third moduli
space of sheaves of the same rank over an elliptic K3 surface. More precisely, we will
show:
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Proposition 2.1. Let X be a K3 surface, v = (r, c, a) ∈ Heven(X) be a Mukai vector
with gcd(r, c) = 1, H be a generic polarization. Let Xe be an elliptic K3 surface with
Pic(Xe) = Z[σ] ⊕ Z[f ] where σ is the class of a section of the elliptic fibration and
f is the fiber class. The the moduli space MX,H(2v) is deformation equivalent to a
certain moduli space of sheaves MXe,σ+lf (2v

′) on Xe, where v′ = (r, σ + lf, a′) for
some l and a′. Moreover, the polarization σ + lf is v′-suitable.

We recall the notion of a suitable polarization. Note that for such an elliptic K3
surface, the ample cone is 2-dimensional, and the ray generated by the fiber class
f is a boundary of the ample cone, since for any pair of positive integers a and b
satisfying 2a < b, the class aσ+ bf is ample by Nakai-Moishezon criterion. Therefore
for any fixed Mukai vector v = (r, c, a), there is exactly one chamber in the ample
cone, which has this ray (generated by f) as a boundary. We say an ample class is
suitable with respect to v if it is contained in the interior of this chamber. (See for
instance Definition 5.3.1 and Remark 5.3.6 in [HL97].) We also recall the following
proposition on suitable polarizations.

Lemma 2.2. [HL97, Remark 5.3.6] Under the same notations as above, the class
σ +mf is suitable if m > 3 + r2∆(v)/8, where ∆(v) = 2r2 + 〈v2〉 is the discriminant
of the Mukai vector v. �

Before proving proposition 2.1, we have to consider moduli spaces of polarized K3
surfaces. Much of this has been summarized in [HL97].

Let d be a positive number, we consider all K3 surfaces X with ample primitive line
bundles L satisfying c21(L) = 2d. Then there is a quasi-projective scheme Kd, which
is a coarse moduli space of all such pairs (X,L).

This moduli space can be constructed by GIT. More precisely, it is a PGL(N) quotient
of Hd which is an open subset of a certain Hilbert scheme. The universal family over
the Hilbert scheme provides a universal family of polarized K3 surfaces over Hd. For
every point t ∈ Hd, the fiber of this universal family (Xt,Lt) is exactly the pair
corresponding to the image of t in Kd.
Furthermore, we know that both Kd and Hd are irreducible. Therefore, any two
primitively polarized K3 surfaces (X1, L1) and (X2, L2) with L2

1 = L2
2 are deformation

equivalent to each other.

Another fact which will be used later is: for a general polarized K3 surface (X,L) ∈
Kd, we have Pic(X) = Z[H]. In other words, in the moduli space Kd of primitively
polarized K3 surfaces, away from a countable union of Zariski closed subsets, the
Picard number ρ(X) = 1. However, the countable union of polarized K3 surfaces
(X,H) ∈ Kd with ρ(X) > 2 is also dense in Kd.
We will need the following proposition:

Proposition 2.3. Let r and k be positive integers and a be an arbitrary integer.
Then there is a relative moduli space ϕ : M −→ Hd of semistable sheaves, such
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that for every t ∈ H, ϕ−1(t) is isomorphic to the moduli space of semistable sheaves
MXt,Lt(2vt) where vt = (r, kLt, a).

Proof. The proposition is a special case of the existence theorem of relative moduli
spaces of semistable sheaves ([HL97, Theorem 4.3.7]). �

We will also need the following simple observation of Yoshioka on the preservation of
Gieseker stability under tensor product with a line bundle.

Lemma 2.4. [Yos01b, Lemma 1.1] Let (X,H) be a polarized K3 surface, v be an
arbitrary Mukai vector with positive rank and H is a generic polarization with respect
to v. Then F is H-stable (resp. semistable) if and only if F ⊗ L is H-stable (resp.
semistable). In other words, the moduli spaces MX,H(v) and MX,H(v · ch(L)) are
isomorphic. �

Now we are ready to prove proposition 2.1. The proof will be parallel to the proof of
Theorem 6.2.5 in [HL97].

Proof of Proposition 2.1. The proof is presented in 4 steps.

Step 1. Without loss of generality, we can assume that c is an ample class.

In fact, if c is not ample, we can apply lemma 2.4 to get a new moduli space isomorphic
to the original one. More precisely, for every semistable sheaf F with Mukai vector
2v = 2(r, c, a), we consider a new sheaf F ⊗H⊗m. We have that

v(F ⊗H⊗m) = v(F ) · ch(H)⊗m = 2(r, c+ rmH, a+ cmH +
rm2

2
H2).

We denote the new Mukai vector (r, c + rmH, a + cmH + rm2

2
H2) by v′. By lemma

2.4 we have an isomorphism between MX,H(2v) and MX,H(2v′). Since H is ample,
we know that c+ rmH is also an ample class when m is sufficiently large. Therefore
we can replace MX,H(2v) by MX,H(2v′).

Step 2. Without loss of generality, we can assume that ρ(X) > 2.

If not, then Pic(X) = Z[H]. Let c = kH where k > 0. We can consider the relative
moduli space ϕ : M −→ Hd in proposition 2.3. Our moduli space MX,H(2r, 2kH, 2a)
is a fiber of this relative moduli space over the point (X,H). Since polarized K3
surfaces with Picard number at least two are dense in Hd, a priori, we can choose any
polarized K3 surface (Xt, Ht) near (X,H) in Hd, with ρ(Xt) > 2, so that the original
moduli space MX,H(2r, 2kH, 2a) is deformation equivalent to the new moduli space
MXt,Ht(2r, 2kHt, 2a).

However, we still have to make sure that Ht is a generic polarization on X with
respect to the Mukai vector (2r, 2kHt, 2a). We need the following lemma:

Lemma 2.5. In a sufficiently small open neighborhood of (X,H) in Hd, there are
at most finitely many hypersurfaces, such that for every point (Xt, Ht) not on those
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hypersurfaces, the polarization Ht is generic with respect to the corresponding Mukai
vector 2(r, kHt, a).

We will postpone the proof of this lemma to the end of this section.

By virtue of the above lemma, we can always find a polarized K3 surface (Xt, Ht)
with ρ(Xt) > 2, which is deformation equivalent to the original polarized K3 surface
(X,H).

Step 3. We can even assume that c = H and H2 � 0.

In fact, since H is in an open chamber and ρ(X) > 2, we can always pick another
primitive ample line bundle H ′ in the same open chamber as H, which is linearly
independent with c. Therefore MX,H(2v) is canonically the same as MX,H′(2v). We
can now apply lemma 2.4 and twist the sheaves in the moduli space MX,H′(2v) by H ′

for a few times to get an isomorphic moduli space. More precisely, if v(F ) = 2(r, c, a),
then

v(F ⊗H ′⊗m) = v(F ) · ch(H ′)⊗m = 2(r, c+ rmH ′, a+ cmH ′ +
rm2

2
H ′

2
).

We denote the Mukai vector (r, c + rmH ′, a + cmH ′ + rm2

2
H ′2) by v′. By lemma

2.4, MX,H′(2v) is isomorphic to MX,H′(2v′). Note that when m is sufficiently large,
c+ rmH ′ is very close to H ′, therefore is also ample and in the same chamber as H ′,
or H. So the moduli space MX,H′(2v′) is isomorphic to MX,c+rmH′(2v′). With the
additional assumption that r and c are coprime, we know that c+ rmH ′ is primitive.
Increase m we can make (c+ rmH ′)2 � 0.

Step 4. We can finish the proof based on the assumptions made in the previous step.

Now We consider an elliptic K3 surface Xe with Pic(Xe) = Z[σ] ⊕ Z[f ] where σ
is the class of a section and f is the fiber class, as stated in the proposition. We
take l = H2 + 2. Then it is clear that H2 = (σ + lf)2. By the previous step we
can assume H2 � 0, therefore we have l � 0. Since the discriminant ∆(2v) is the
same as ∆(2(r, σ + lf, a)), the assumption of lemma 2.2 holds when l > 3 + 2r2∆(v),
therefore we know σ + lf is ample and suitable with respect to the Mukai vector
2(r, σ + lf, a). Hence both of the polarized K3 surfaces (X,H) and (Xe, σ + lf) lie
in Hd. Now we apply proposition 2.3 again with the assumption k = 1 to conclude
that MX,H(2(r, c, a)) is deformation equivalent to MXe,σ+lf (2(r, σ + lf, a)).

�

From proposition 2.1 we can prove the following corollary:

Corollary 2.6. For i = 1, 2, let Xi be a K3 surface, vi = (ri, ci, ai) ∈ Heven(Xi,Z) be
a primitive Mukai vector with gcd(ri, ci) = 1 and Hi be a generic ample line bundle on
Xi with respect to vi. If r1 = r2 = r and 〈v21〉 = 〈v22〉, then moduli spaces of semistable
sheaves MX1,H1(2v1) is deformation equivalent to MX2,H2(2v2).
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Proof. By proposition 2.1, there exists an elliptic K3 surface Xe, such that, for i = 1
and 2, there exists a positive integer li, such that MXi,Hi

(2vi) is deformation equivalent
to MXe,σ+lif (2(r, σ + lif, ai)).

Now we claim the two moduli spaces

M1 = MXe,σ+l1f (2(r, σ + l1f, a1)) and M2 = MXe,σ+l2f (2(r, σ + l2f, a2))

are isomorphic. For simplicity we write wi = 2(r, σ + lif, ai) for i = 1, 2.

In fact, from the given condition we know the two moduli spaces have the same
dimension, therefore 〈w2

1〉 = 〈w2
2〉, that is, (σ+ l1f)2− 2ra1 = (σ+ l2f)2− 2ra2. This

implies 2r(a2− a1) = 2(l2− l1)σ · f = 2(l2− l1), so r divides l2− l1. Let l2− l1 = r ·h.
If h = 0 then we are left nothing to prove. Without loss of generality, we assume
h > 0.

By lemma 2.2 we know that σ + l1f is w1-suitable. Since l1 < l2, σ + l2f is also w1-
suitable (in particular, w1-generic), and therefore M1 is the same as MXe,σ+l2f (w1).
Now we apply lemma 2.4 with L = O(hf) on this moduli space. A simple calculation
shows that w1 ⊗ ch(L) = w2, therefore M1 is further isomorphic to MXe,σ+l2f (w2) =
M2.

This proves the two original moduli spaces are deformation equivalent to each other.
�

To conclude this section we prove the Lemma 2.5. The idea is similar to Lemma 4.C.2
in [HL97]. For the proof we need to state the following lemma:

Lemma 2.7. [HL97, Theorem 4.C.3] Let H be an ample line bundle, and F be a
semistable coherent sheaf with Mukai vector v(F ) = (r, c, a). Let F ′ be a subsheaf
of F with Mukai vector v(F ′) = (r′, c′, a′), where 0 < r′ < r, such that the reduced
Hilbert polynomials p(F,m) = p(F ′,m). Let ∆ = 2r2 + c2 − 2ra be the discriminant
of F . Then we have

(1) ra′ − r′a = 0;
(2) let ξ = rc′ − r′c, then ξ ·H = 0;

(3) − r2

4
∆ 6 ξ2 6 0 and ξ2 = 0 if and only if ξ = 0. �

Now we can begin to prove lemma 2.5.

Proof of Lemma 2.5. We consider the walls in H2(X,R). Let σ be a generator of
H2,0(X), then σ is a generator of H0,2(X). Let

e1 =
σ + σ√
(σ + σ)2

and

e2 =
σ − σ√
−(σ − σ)2

.
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Then both e1 and e2 are unit vectors in H2(X,R). Furthermore, since the signature of
Poincare pairing on H2(X,R) is (3, h1,1− 3), we see that {e1, e2, H} is an orthogonal
basis of a three dimensional subspace V of H2(X,R). Therefore, for every class
u ∈ H2(X,R), we can decompose it into u = a1e1+a2e2+a0H+u0 where a0, a1, a2 ∈ R
and u0 ∈ V ⊥. Besides the Poincare pairing, we can define an Euclidean pairing on
H2(X,R), by ‖ u ‖2=

√
a21 + a22 + a20H

2 − u20.
For every pair (X ′, H ′) ∈ Hd, we can produce e′1, e

′
2 in the same way as e1, e2. In a

sufficiently small open neighborhood of the pair (X,H) in Hd, every base manifold
X ′ is a small deformation of X, whose H2,0 and H0,2 are very closed to H2,0(X) and
H0,2(X). More precisely, we can require ‖ e′1 − e1 ‖< ε and ‖ e′2 − e2 ‖< ε.

Since e′1 and e′2 are both perpendicular to H, let e′1 = λ1e1 + δ1e2 +h1 where h1 ∈ V ⊥
and e′2 = δ2e1+λ2e2+h2 where h2 ∈ V ⊥. Then ‖ e′1−e1 ‖< ε implies (1−λ1)2+δ21+ ‖
h1 ‖2< ε2. So we can conclude |1 − λ1| < ε, |δ1| < ε, ‖ h1 ‖< ε. Similarly, from
‖ e′2 − e2 ‖< ε, we can deduce |1− λ2| < ε, |δ2| < ε, ‖ h2 ‖< ε.

By lemma 2.7, we know that there exists a positive constant ∆, such that for every
ξ ∈ H1,1(X ′) which produces a wall in H2(X ′,R) = H2(X,R) for some pair (X ′, H ′)
in the small neighborhood of (X,H), we have −∆ < ξ2 6 0. Since ξ ⊥ H, we can
decompose ξ as ξ = a1e1 + a2e2 + ξ0 where ξ0 ∈ V ⊥. We want to show the Euclidean
norm ‖ ξ ‖2= a21 + a22 − ξ20 is bounded.

Note that ξ ⊥ e′1 and ξ ⊥ e′2, that is,

λ1a1 + δ1a2 + h1 · ξ0 = 0

δ2a1 + λ2a2 + h2 · ξ0 = 0

Therefore we have

(λ1a1 + δ1a2)
2 = (h1 · ξ0)2 6‖ h1 ‖2‖ ξ0 ‖2

(δ2a1 + λ2a2)
2 = (h2 · ξ0)2 6‖ h2 ‖2‖ ξ0 ‖2

We add the two inequalities. The left hand side is

(λ21 + δ22)a21 + (δ21 + λ22)a
2
2 + 2(λ1δ1 + δ2λ2)a1a2

> (1− ε)2(a21 + a22)− 4ε(1 + ε)a1a2

> (1− ε)2(a21 + a22)− 2ε(1 + ε)(a21 + a22)

= (1− 4ε− ε2)(a21 + a22).

So now we have
(1− 4ε− ε2)(a21 + a22) < 2ε2 ‖ ξ0 ‖2 .

Therefore we have

−∆ < a21 + a22− ‖ ξ0 ‖2< (
2ε2

1− 4ε− ε2
− 1) ‖ ξ0 ‖2 .

So

‖ ξ0 ‖2<
∆

1− 2ε2

1−4ε−ε2
.
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Therefore

‖ ξ ‖2= a21 + a22+ ‖ ξ0 ‖26 2 ‖ ξ0 ‖2<
2∆

1− 2ε2

1−4ε−ε2

which is bounded regardless of the underlying K3 surface X ′.

Therefore, in a small open neighborhood of (X,H) in Hd, there are at most finitely
many hypersurfaces, on which the polarization is not generic. Since we have assumed
that H is in generic on X, we can always shrink the open neighborhood of (X,H)
in Hd, so that it misses all these hypersurfaces. In other words, for every point
(Xt, Ht) in this open neighborhood, H ′ is generic with respect to the Mukai vector
2(r, kHt, a). �

3. Birational Equivalence

In this section, we will establish the birational equivalence between some singular
moduli spaces of semistable sheaves, so that together with the deformation result we
obtained in the previous section, for any two moduli spaces of sheaves in the same
dimension, both with 2-divisible Mukai vectors, we can connect them by a series of
deformations and birational maps. For this purpose, in this section we always fix
the underlying K3 surface, which is a projective K3 surface with Picard number 1.
Roughly speaking, we will prove that for every value of r, there is a moduli space
of rank 2r sheaves, which is birational to a moduli space of rank 2 sheaves (in case
r = 2 , birational to a moduli space of sheaves of higher rank). The method we are
using here in proving the birationality is mainly the technique of exceptional bundles
introduced by Yoshioka in [Yos99b]. Similar to [Yos99b], the proof here involves some
delicate analysis of slopes of sheaves.

The main theorem of this section is:

Proposition 3.1. For any given r > 3 and s > 1, let X be a projective K3 surface
with Pic(X) = Z[H] where H is an ample line bundle with H2 = 2s(r − 1)2 − 2r.
Consider Mukai vectors

v0 = (r − 1, (r − 2)H, (r3 − 5r2 + 8r − 4)s+ (−r2 + 3r − 1)),

v1 = (r, (r − 1)H, (r3 − 4r2 + 6r − 4)s+ (−r2 + 2r − 1)),

v2 = (1, H, (r2 − 2r)s− r).

Then the moduli spaces of semi-stable sheaves MX,H(2v1) is birational equivalent to
MX,H(2v2).

Simple calculation shows that 〈v21〉 = 〈v22〉 = 2s, therefore moduli spaces MX,H(2v1)
and MX,H(2v2) have the same dimension. We also have 〈v0, v1〉 = −1 and 〈v0, v2〉 = 1.
Furthermore, we have 〈v20〉 = −2. Due to the following lemma of Yoshioka, the
technique of exceptional bundles applies.
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Lemma 3.2. [Yos99b, Theorem 3.6] The moduli space MX,H(v0) consists of one point
which corresponds to a µ-stable locally free sheaf E. We call such a locally free sheaf
an exceptional bundle. �

We should also note that, in proposition 3.1, we require r > 3. The reason is that,
the formula for H2 in the setup of the proposition doesn’t produce a positive number
for small values of s. However, by carefully choosing the numerical data in these two
cases, the proof will work in exactly the same way for the remaining case. We will
state a theorem for this remaining case in the end of this section and omit its proof.
Note that the same problem also happened in the proof of [Yos99b, Theorem 3.8],
and was dealt with in the same way.

Before we prove proposition 3.1, we want to show that a generic point in the moduli
spaces MX,H(2v1) or MX,H(2v2) is represented by a µ-stable locally free sheaf. We
recall the following lemma due to Yoshioka:

Lemma 3.3. [Yos99a, Remark 2.2][Yos99b, Lemma 4.4, Remark 4.3] Let (X,H) be
a generic polarized K3 surface. Let v = (lr, lξ, a) be a Mukai vector, such that r and
ξ are coprime. Then there is at least one µ-stable sheaf with Mukai vector v unless
the following two conditions simultaneously hold:

• ξ
2 + 2

2r
is an integer;

• 〈v2〉 < 2l2. �

We apply the above lemma in our situation. Note that when v = 2v1 or 2v2, we
always have

〈v2〉 = 8s > 8 = 2l2.

The second condition in the above lemma fails, both of the moduli spaces MX,H(2v1)
and MX,H(2v2) contain at least one µ-stable sheaf. Take into consideration that the
µ-stability is an open condition, we know that each of the two moduli spaces has
an open subscheme, which parametrizes µ-stable sheaves. Moreover, the following
lemma due to Yoshioka shows that a generic point in the µ-stable locus is represented
by a locally free sheaf:

Lemma 3.4. [Yos01b, Remark 3.2] Let r be the rank component of the Mukai vector
v. Then the complement of the locus of locally free sheaves in the moduli of µ-stable
sheaves Mµ-st

X,H(v) has codimension r − 1. �

In our situation, the rank of the sheaf is at least 2. So we conclude that

Corollary 3.5. There are open subschemes U1 and U2 in MX,H(2v1) and MX,H(2v2)
respectively, which parametrize all locally free µ-stable sheaves with Mukai vector 2v1
and 2v2. �

First of all we need the following lemma, whose proof is very similar to [Yos99b,
Lemma 2.1].
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Lemma 3.6. Let E be as given in lemma 3.2 For any µ-stable locally free sheaf G in
MH(2v2) and any non-trivial extension

(1) 0 −→ E −→ V −→ G −→ 0,

then V is also a µ-stable locally free sheaf.

Proof. Since both E and G are locally free, V is also locally free. Assume V is not
µ-stable, then we can find a locally free µ-stable subsheaf K such that

degK

rankK
>

deg V

rankV
=

r

r + 1
.

In fact the inequality is strict because otherwise rankK will be a multiple of r + 1
which is a contradiction. So we have

degK

rankK
>

r

r + 1
>
r − 2

r − 1
=

degE

rankE
.

Since E is stable, there is no non-trivial map from K to E. So the composition
K −→ V −→ G is non-trivial. Since G is µ-stable, we have

degK

rankK
6

degG

rankG
= 1.

So now we have
r

r + 1
<

degK

rankK
6 1.

If
r

r + 1
<

degK

rankK
< 1,

then

0 <
rankK − degK

rankK
<

1

r + 1
.

Therefore we must have rankK > r + 1, which is absurd. Therefore, we must have
degK
rankK

= 1. Now we consider the non-trivial map ϕ : K −→ G. It can be factored as
K � Imϕ ↪→ G. Since both K and G are µ-stable, we have

1 =
degK

rankK
6

deg Imϕ

rank Imϕ
6

degG

rankG
= 1.

Therefore both equalities hold. Due to the µ-stability of K, the first equality implies
that K = Imϕ. In particular, Imϕ is locally free. Due to the µ-stability of G,
the second equality implies that rank Imϕ = rankG and deg Imϕ = degG. And
since both Imϕ and G are locally free, we can further conclude that Imϕ = G. Hence
K = G, which means the exact sequence (1) splits. It contradicts with the assumption
that the extension is non-trivial.

So V is µ-stable. �

By applying the same method, we can prove
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Lemma 3.7. For any µ-stable locally free sheaf G in MX,H(2v2), and any extension
given by a 2-dimensional subspace of Ext1(G,E)

0 −→ E⊕2 −→ F −→ G −→ 0,

the sheaf F is a µ-semistable locally free sheaf in MX,H(2v1).

Proof. We consider the push-out diagram

0

��

0

��
E

��

E

��
0 // E⊕2 //

��

F //

��

G // 0

0 // E ⊕ 0 //

��

V //

��

G // 0

0 0

Due to the fact that F corresponds to a two dimensional subspace of Ext1(G,E), the
extension in the middle column

(2) 0 −→ E −→ F −→ V −→ 0

is a non-trivial extension, where V itself is a locally free µ-stable sheaf by lemma
3.6. We want to show that F is µ-semistable. If not, let K be a locally free µ-stable
destabilizing sheaf of F . Then we have

degK

rankK
>

degF

rankF
=
r − 1

r
.

Since
degE

rankE
=
r − 2

r − 1
<

degK

rankK
,

we know there is no non-trivial map from K to E. Therefore the composition ϕ :
K −→ F −→ V is a non-trivial map. By the µ-stability of V we have

degK

rankK
6

deg V

rankV
,

therefore now we have
r − 1

r
<

degK

rankK
6

r

r + 1
.

If
r − 1

r
<

degK

rankK
<

r

r + 1
,
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then we will have

r <
rankK

rankK − degK
< r + 1,

which implies rankK > 2r. Contradiction!

Therefore we must have
degK

rankK
=

r

r + 1
=

deg V

rankV
.

The map ϕ : K −→ V factors through Imϕ as K � Imϕ ↪→ V . Since both K
and V are µ-stable and have the same slope, Imϕ must have the same slope as well.
Furthermore, K � Imϕ must be an identity map, hence Imϕ is locally free because
K is locally free. Since V is also locally free, Imϕ ↪→ V must also be an identity map.
This concludes K = V , which means the exact sequence (2) splits. Contradiction!

This shows that F must be µ-semistable. �

Now we want to prove the extension in the above lemma is essentially unique for a
generic choice of G.

Lemma 3.8. there is an open dense subset U2 of the locally free µ-stable locus in
MH(2v2), such that for any G ∈ U2, we have dim Ext1(G,E) = 2. In other words,
there is only one such sheaf F up to isomorphisms as in lemma 3.7.

Proof. We have χ(G,E) = −〈v(G), v(E)〉 = −〈2v2, v0〉 = −2. However Hom(G,E) =
0 since degG

rankG
> degE

rankE
. By Serre duality, we have Ext2(G,E) = Hom(E,G). Therefore

it suffices to show that for every G ∈ U2 we have Hom(E,G) = 0.

Since the moduli space MH(2v2) is irreducible [KLS06, Theorem 4.4], by the upper
semi-continuity theorem, the vanishing of Hom is an open condition, therefore it
suffices to explicitly produce one example of a semistable sheaf G′ ∈ MH(2v2), for
which Hom(E,G′) = 0. Note that G′ doesn’t have to be locally free or strictly
stable. In fact, we will show that, for a generic choice of G0 ∈ MH(v2), we have
Hom(E,G0) = 0, therefore G′ = G0 ⊕G0 will solve the problem.

Since v0, v1 and v2 are all primitive, we are now in a very favourable situation, which
has been thoroughly studied in [Yos99b, Section 3]. In fact, in [Yos99b, Lemma 3.1],
it is proved that sheaves F0 ∈ MH(v1) satisfying dim Hom(E,F0) = 1 form an open
dense subset W1 of MH(v1). Moreover, by the last paragraph in the proof of [Yos99b,
Theorem 3.5], W1 is isomorphic to an open dense subset W2 of MH(v2), consisting
of all G0 ∈ MH(v2) satisfying dim Hom(E,G0) = 0. Therefore for any such G0, the
self direct sum G′ = G0⊕G0 satisfies dim Hom(E,G′) = 0. As said above, the upper
semi-continuity theorem guarantees the same is true on an open dense subset U2 of
the locally free µ-stable locus in MH(2v2). �

Now we are ready to finish the proof of proposition 3.1.

Proof of proposition 3.1. For every locally free µ-stable sheaf G ∈ U2, by lemma 3.7
and 3.8, we have associated it a locally free µ-semistable sheaf F with Mukai vector
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2v1, which establishes a morphism from U2 to the moduli space Mµ-ss
X,H(2v1) of µ-

semistable sheaves with Mukai vector 2v1. In fact, the extension sequence in lemma
3.7 holds in flat families. Let V be any affine open subscheme of U2. Let G be the
universal sheaf on V ×X, and let E be the pullback of the exceptional bundle E along
the projection from V ×X to X. Then we have the extension sequence

0 −→ E −→ F −→ G −→ 0

on V × X, which induces a morphism from V to Mµ-ss
X,H(2v1). Furthermore, the

restriction of the above extension sequence to every closed point in F is exactly
the extension sequence in lemma 3.7. Therefore, the morphism from all the affine
subschemes of U2 glue together to give a morphism

η : U2 −→Mµ-ss
X,H(2v1).

Now we show this map is injective on closed points. From the exact sequence

0 −→ E⊕2 −→ F −→ G −→ 0,

we have
0 −→ Hom(E,E⊕2) −→ Hom(E,F ) −→ Hom(E,G).

In lemma 3.8 we have proved Hom(E,G) = 0, so dim Hom(E,F ) = dim Hom(E,E⊕2) =
2, which implies that there is only one way to get a quotient sheaf G.

it is easy to see that the locus U1 of µ-stable locally free sheaves with Mukai vector 2v1
is also an open subscheme of Mµ-ss

X,H(2v1). Therefore η−1(U1)∩U2 is an open subscheme
of U2, and hence an open subscheme of MX,H(2v2). Since both U1 and U2 are smooth,
the restriction of η on η−1(U1)∩U2 is an isomorphism onto its image, which identifies
two smooth open subschemes of MX,H(2v1) and MX,H(2v2). By [KLS06, Theorem
4.4], the two moduli spaces are irreducible of the same dimension, so we can conclude
that MX,H(2v1) and MX,H(2v2) are birational. �

Finally, we deal with the exceptional case r = 2. We have a similar birational result
as in the above general case.

Proposition 3.9. For any given s > 1, let X be a projective K3 surface with
Pic(X) = Z[H] where H is an ample line bundle with H2 = 50s − 28. Consider
Mukai vectors

v0 = (5, 2H, 20s− 11),

v1 = (7, 3H, 32s− 18),

v2 = (2, H, 12s− 17).

Then the moduli spaces of semi-stable sheaves MX,H(2v1) is birational equivalent to
MX,H(2v2). �

The proof of the above proposition is completely parallel to the proof of proposition
3.1. We will not repeat it here. Combining corollary 2.6, proposition 3.1 and 3.9, we
have proved theorem 1.1.
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4. Rank 0 Case

In this section we will prove the following birational equivalence between a moduli
space of rank 0 sheaves and a moduli space of rank 2 sheaves.

Theorem 4.1. Let X be a K3 surface and H be an ample line bundle. Assume
Pic(X) = Z[H]. Let v1 = (0, 2H,−2) and v2 = (2, 2H, 0). Then the moduli spaces of
sheaves MX,H(v1) and MX,H(v2) are birational.

Proof. Let U = { i∗Q ∈MX,H(v1) |Q is a line bundle supported on a smooth curve C ∈
|2H|}. Then U is an open subscheme of MX,H(v1). We know that g(C) = 1 + 1

2
C2 =

1 + 2H2. Furthermore, by Grothendieck-Riemann-Roch formula, we know that

i∗(ch(Q) · td(C)) = ch(i∗Q) · td(X),

that is,

i∗((1, degQ) · (1,−2H2)) = (0, 2H,−2) · (1, 0, 2).

We can conclude that degQ = 2H2 − 2.

For every i∗Q ∈ U ⊂MX,H(v1), we construct a sheaf F as a non-trivial extension

0 −→ O⊕2 −→ F −→ i∗Q −→ 0.

First of all, we have to show that, for a generic i∗Q ∈ U , there is only one way to
build up such an extension F . In order to prove this, we need to show that a generic
i∗Q ∈ U satisfies dim Ext1(i∗Q,O) = 2.

By Serre duality, we know that

Ext1(i∗Q,O) = Ext1(O, i∗Q⊗KX)∨ = H1(X, i∗Q⊗KX)∨

= H1(C,Q⊗ i∗KX)∨ = H0(C,Q∨ ⊗NC/X).

We can find that deg(Q∨ ⊗ NC/X) = deg(Q∨ ⊗KC) = 2H2 + 2. By Riemann-Roch
formula, we know that

χ(Q∨ ⊗NC/X) = 1− (2H2 + 1) + (2H2 + 2) = 2.

We need to prove that for a generic i∗Q ∈ U , dimH0(C,Q∨⊗NC/X) = 2. By upper-
semi-continuity theorem, we only need to show that there exists at least one i∗Q ∈ U ,
which makes dimH0(C,Q∨ ⊗NC/X) = 2.

Since Q is an arbitrary line bundle on an arbitrary smooth curve C ∈ |2H|, we only
need to prove the following lemma:

Lemma 4.2. Let C be a smooth curve and L be a line bundle on C with χ(L) = 2.
If L is general, then dimH0(L) = 2 and dimH1(L) = 0.

Proof. In contrary we assume the infimum of dimH0(L) of such L’s is at least 3. Pick
any p ∈ C which is not a base point of L. From the exact sequence

0 −→ L(−p) −→ L −→ Op −→ 0
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and its associated long exact sequence

0 −→ H0(L(−p)) −→ H0(L) −→ Cp

−→ H1(L(−p)) −→ H1(L) −→ 0

we know that dimH0(L(−p)) = dimH0(L)− 1, and dimH1(L(−p)) = dimH1(L) >
1.

By Serre duality, we have H1(L(−p)) = H0(KC⊗L∨(p))∨. We can again pick a point
q ∈ C which is not a base point of KC ⊗ L∨(p). Then from the short exact sequence

0 −→ KC ⊗ L∨(p− q) −→ KC ⊗ L∨(p) −→ Oq −→ 0

and its associated long exact sequence

0 −→ H0(KC ⊗ L∨(p− q)) −→ H0(KC ⊗ L∨(p)) −→ Cq

−→ H1(KC ⊗ L∨(p− q)) −→ H1(KC ⊗ L∨(p)) −→ 0

we know that

dimH0(KC ⊗ L∨(p− q)) = dimH0(KC ⊗ L∨(p))− 1

and

dimH1(KC ⊗ L∨(p− q)) = dimH1(KC ⊗ L∨(p)).
Again by Serre duality, we know that

dimH1(L(−p+ q)) = dimH1(L(−p))− 1 = dimH1(L)− 1

and

dimH0(L(−p+ q)) = dimH0(L(−p)) = dimH0(L)− 1.

So we see that the existence of the line bundle L(−p + q) conflicts the assumption.
Therefore, there must be a line bundle L with χ(L) = 2, such that dimH0(L) = 2.
By the upper-semi-continuity theorem, we know that this is true for a generic line
bundle on any smooth curve C. �

Back to the proof of theorem 4.1. We know for a generic i∗Q ∈ U , we have
dim Ext1(i∗Q,O) = 2. Therefore, there is only one way to produce a sheaf F ∈
MX,H(v3) from i∗Q via the extension

0 −→ O⊕2 −→ F −→ i∗Q −→ 0.

Now we have to prove F is torsion free. In fact, we want to prove, if i∗Q ∈ U is
generic, then F is locally free. We need the following two lemmas:

Lemma 4.3. Under the above conditions, the sheaf F is locally free if and only if
Q∨ ⊗NC/X is base point free.

Proof. Note that Hom(i∗Q,O⊕2) = 0. By local to global spectral sequence, we have
an isomorphism

Ext1(i∗Q,O⊕2) ∼= H0(Ext1(i∗Q,O⊕2)) = H0(Ext1(i∗Q,O)⊕ Ext1(i∗Q,O)).
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Therefore, to prove the sheaf F is locally free, we only need to show the restriction
of the two global sections of Ext1(i∗Q,O) to every local ring, provide a free local
extension of the two sheaves.

Let p be a closed point of C. Over SpecOp, we can assume the curve is cut by one
equation g ∈ Op, and resolve the torsion sheaf i∗Q as

0 −→ Op
· g−→ Op −→ Op/(g) −→ 0.

Apply the functor Hom(−,O⊕2p ) we get the long exact sequence

0 −→ Hom(Op,O⊕2p ) −→ Hom(Op,O⊕2p ) −→ Ext1(Op/(g),O⊕2p ) −→ 0.

Therefore, let (ϕ1, ϕ2) be the restriction of two linearly independent sections of
Ext1(i∗Q,O) to the local ringOp, then (ϕ1, ϕ2) ∈ Ext1(i∗Q,O⊕2)p = Ext1(Op/(g),O⊕2p ).

They are images of functions (f1, f2) ∈ Hom(Op,O⊕2p ). Then the stalk of the sheaf F
over SpecOp is given by the push out diagram

0 // Op
g

��

(f1,f2)// O⊕2p //

��

Op/(g) // 0

0 // Op // Fp // Op/(g) // 0

Therefore, the stalk Fp = O⊕3p /(f1, f2, g). Since g is the defining equation of the
curve C, g(p) = 0. So Fp is a free Op module if and only if f1(p) and f2(p) are not
simultaneously 0.

Note that (ϕ1, ϕ2) is the restriction of (f1, f2) on the curve C. So Fp is free when
ϕ1(p) and ϕ2(p) are not simultaneously 0. Therefore, as long as ϕ1 and ϕ2 do not
have common zeroes along C, the sheaf F is locally free. That is to say, we want the
sheaf Ext1(i∗Q,O) to be base point free for a generic i∗Q.

Furthermore, we can also observe from the above that the sheaf Ext1(i∗Q,O) is
canonically isomorphic to i∗Hom(Q ⊗ OC(−C),OC) = i∗(Q

∨ ⊗ NC/X). So we have
H0(X, Ext1(i∗Q,O)) = H0(C,Q∨ ⊗NC/X). Therefore, the extension F is locally free
if and only if Q∨ ⊗NC/X is base point free. �

We have already proved that for a generic i∗Q ∈ U , Q∨ ⊗NC/X has two dimensional
global sections. The next step is to prove that under this condition, a generic Q∨ ⊗
NC/X is base point free.

Lemma 4.4. Let C be a smooth curve and L be a line bundle on C with χ(L) = 2.
For a general L, it is base point free.

Proof. Without loss of generality, we only need to consider all line bundles L with
dimH0(L) = 2 and dimH1(L) = 0. Note that base point freeness is an open con-
dition in a flat family of line bundles with constant dimensional cohomology groups.
Therefore we only need to show that there is at least one such line bundle L which is
base point free.
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First of all we can choose a line bundleM such that dimH0(M) = 1 and dimH1(M) =
0. In fact, for any line bundle L with dimH0(L) = 2 and dimH1(L) = 0, let p be
a point not in the base locus of L, then M = L(−p) does the job. We denote the
generator of H0(M) by σ.

We claim that there must be a point q which makes M(q) base point free. In fact,
from the exact sequence of cohomology groups, we know dimH0(M(q)) = 2 and
dimH1(M(q)) = 0 for any q ∈ C. We assume the contrary that for every q ∈ C,
M(q) has a base point. Then the base point must be in the zero locus of σ. Since the
zero set of the section σ is finite, we conclude that there must be a point r ∈ σ−1(0),
which is the common base point of M(q)’s for all q ∈ C. In particular, r is the base
point of M(r) which is absurd. This proves the lemma. �

Now we come back again to the proof of theorem 4.1, following the argument before
the above two lemmas. By these lemmas, we see that for a generic i∗Q ∈ U , the
extension sheaf F we constructed is a locally free sheaf.

Now we prove the sheaf F is stable.

Assume that F can be destabilized by a subsheaf L. Since F is locally free of rank
2, without loss of generality we can further assume rankL = 1 and L is locally free.
From degL

rankL
> degF

rankF
, we have c1(L) > H. We assume that L = O(H), since otherwise

O(H) also destabilizes F .

Obviously Hom(L,O⊕2) = 0 since degL
rankL

> 0. We also have

Hom(L, i∗Q) = H0(X,L∨ ⊗ i∗Q) = H0(C, i∗L∨ ⊗Q).

Since deg(i∗L∨⊗Q) = degL∨ + degQ = −L ·C + degQ = −2H2 + (2H2− 2) = −2,
we know that Hom(L, i∗Q) = H0(C, i∗L∨ ⊗ Q) = 0. Therefore Hom(L, F ) = 0.
Contradiction!

Finally, we prove for every such sheaf F that we obtained by extension

0 −→ O⊕2 −→ F −→ i∗Q −→ 0,

there is only one sheaf i∗Q ∈ U with dimH0(C,Q∨ ⊗NC/X) = 2 which produces F .
In fact, in the long exact sequence of cohomology groups

0 −→ H0(X,O⊕2) −→ H0(X,F ) −→ H0(X, i∗Q),

we already know that

H0(X, i∗Q) = H0(C,Q) = H1(C,Q∨ ⊗KC)∨ = H1(C,Q∨ ⊗NC/X)∨ = 0.

So dimH0(F ) = dimH0(O⊕2) = 2. Therefore i∗Q is also uniquely determined by F .

In the same way as in the proof of proposition 3.1, we can see that the above extension
can also be done in flat falilies, therefore gives a morphism

η : V −→MX,H(v2)

where V is the open subscheme of MX,H(v1), which parametrizes all line bundles
supported on smooth curves in the linear system |2H| satisfying the conditions of
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lemmas 4.2 and 4.4. And the image of η lies in the smooth open subscheme of
MX,H(v2) which parametrizes locally free stable sheaves with Mukai vector v2. The
above discussion also shows that η identifies V with its image. Since the moduli
spaces MX,H(v1) and MX,H(v2) are both irreducible and of the same dimension by
[KLS06, Theorem 4.4], η establishes a birational map from MX,H(v1) to MX,H(v2).

�
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