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Introduction

Let X be a projective K3 surface, and M a moduli space of semistable sheaves on X. By Mukai’s
seminal work [15], when M is smooth, it is an example of the so-called irreducible holomorphic
symplectic manifolds, which are an important class of building blocks in the classification of com-
pact Kähler manifolds with trivial first Chern class. It is then an interesting question to understand
whether the moduli spaces M of semistable sheaves on M inherit any good properties from M .
This paper grew out of an attempt to study this question. When dimM > 2, we cannot expect M
to carry a holomorphic symplectic structure in general, because the Serre duality does not induce
a non-degenerate anti-symmetric pairing on the tangent space of M any more, as opposed to the
case of K3 surfaces; however, some components of M may nevertheless be holomorphic symplectic.

In order to study this question, we need to classify all semistable sheaves on M with fixed
Chern classes, which seems difficult in general when dimM > 2; it is even a challenging question
to construct any non-trivial examples of semistable sheaves on M , due to the fact that stability
is difficult to check on higher dimensional varieties in general. When M is a Hilbert scheme of
points on the K3 surface X, a natural family of vector bundles on M for considering stability
are the so-called tautological bundles, which were proven to be stable with respect to a suitable
choice of an ample line bundle on M by Schlickewei [18], Wandel [21] and Stapleton [20]. In fact,
Wandel proved that, under some mild assumptions, the connected component of the moduli space
containing the tautological bundles is isomorphic to some moduli space of vector bundles on the
underlying K3 surface X.

There is another way to construct examples of stable sheaves on M . Assuming that M is a
fine moduli space of stable sheaves on X with a universal family E on X ×M , and denoting the
“wrong-way fiber” E|{x}×M by Ex for each closed point x ∈ X, we can ask the following questions:

• Is E also a flat family of coherent sheaves on M parametrized by X?
• If so, are the “wrong-way” fibers Ex stable sheaves on M with respect to some suitable choice
of an ample line bundle for every closed point x ∈ X?
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• If so, can we identify X with a connected component of the corresponding moduli space of
stable sheaves on M?

This idea has also been explored in the literature. In [17], the authors studied some families of
ideal sheaves and torsion sheaves of pure dimension 1, and obtained an affirmative answer to the
above questions in these cases. A systematic study of the above questions in the case of locally free
sheaves was carried out in the very interesting and inspiring thesis of Wray [22]. In order to get
around the difficulty of proving stability directly, he invoked the very deep and powerful technique
of Hitchin-Kobayashi correspondence to translate the stability problem to the existence of some
Hermitian-Einstein metrics, which was then solved by analytic methods to give affirmative answers
to the above questions.

The present paper is devoted to study the above questions, in particular the stability of wrong-
way fibers Ex with respect to a polarization near the boundary of the ample cone of M , in the very
classical way by showing that every proper subsheaf of Ex of a smaller rank has a smaller slope.
We will focus on two special cases, namely a projective K3 surface X along with a Mukai vector v
such that either

• NS(X) = Zh with h2 = 4k and v = (k + 1,−h, 1) for any k ! 1; or

• NS(X) = Ze⊕Zf with the intersection matrix given by

!
−2k 2k + 1
2k + 1 0

"
for any k ! 2 as well

as v = (2k − 1, e+ (2k − 1)f, 2k).

We summarize our main results in the following theorem:

Theorem 0.1 For any projective K3 surface X satisfying either of the above conditions,

(1) we can explicitly construct a fine moduli space M of stable vector bundles of Mukai vector v
on X, isomorphic to the Hilbert scheme of k points on X, along with a universal family E (see
Theorem 2.3 and Theorem 3.7);

(2) there exists an ample divisor H on M such that E can be regarded as a flat family of µH-stable
vector bundles on M parametrized by X (see Theorem 2.8 and Theorem 3.15);

(3) the classifying morphism induced by the family E identifies X with a smooth connected com-
ponent of a moduli space of µH-stable sheaves on M (see Theorem 2.10 and Theorem 3.16).

Let us briefly explain how we achieved the above results. Our choices of the K3 surfaces and the
Mukai vectors, as well as the explicit constructions of the moduli space M and the universal family
E in the above two cases, are motivated by [10, Example 5.3.7] and [16, Theorem 1.2] respectively.
In fact, in both cases, the stable sheaves on X are given by the spherical twist (or its inverse) of
the ideal sheaves of k points on X around OX , hence their corresponding moduli spaces M are
isomorphic to the Hilbert scheme X [k] of k points on X. To show the slope stability of the wrong-
way fibers Ex with respect to some ample divisor H on M , we apply the technique developed by
Stapleton [20]; namely, we first prove the slope stability of Ex with respect to a natural nef divisor
on M by passing to the k-fold product of X, then use the openness of stability to perturb the nef
divisor to a nearby ample divisor. In fact, since the perturbation argument in [20] works only for
individual sheaves, we need to generalize it so as to find an ample divisor H with respect to which
all Ex’s are simultaneously stable. Finally, to identify X as a smooth connected component of
some moduli space of stable sheaves on M , we interpret Ex’s as images of some sheaves or derived
objects on X under the integral functor Φ induced by the universal ideal sheaf for X [k]. By the
fundamental result of Addington [1] that Φ is a Pk−1-functor, we can obtain, by computing the
relevant cohomology groups, that Ex’s are distinct and the tangent space of deformations of each
Ex is of dimension 2, which leads immediately to the conclusion.

The text is organized in three sections. The first section gives background on integral functors,
while the other two deal with the two cases mentioned above respectively. All objects in this text
are defined over the field of complex numbers C.

1 Background on spherical twists and Pn-functors

Let X denote a smooth projective variety with dim(X) = d. As we will need them later, we quickly
recall some facts about spherical twists and Pn-functors in this section.

Definition 1.1 An object S ∈ Db(X) is called spherical if

i) S ⊗ ωX
∼= S

ii) Exti(S,S) =
#
C if i = 0, d

0 otherwise
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Remark 1.2 We note the fact that if X is a K3 surface, then any L ∈ Pic(X) is spherical.

Using spherical objects one can construct autoequivalences of Db(X) in the following way: to
any object F ∈ Db(X) one can associate the following object in Db(X ×X):

PF := Cone(F∨ ⊠ F −→ O∆).

We refer to [8, §8] for an exact description of the map F∨ ⊠ F → O∆ and more information.

Definition 1.3 The spherical twist associated to a spherical object S ∈ Db(X) is the Fourier-
Mukai transform

TS := ΦPS : Db(X) −→ Db(X)

with kernel PS .

The most important fact about the spherical twist is

Proposition 1.4 Let S be a spherical object in Db(X). Then the induced spherical twist

TS : Db(X) −→ Db(X)

is an autoequivalence.

The first proof of this proposition was given by Seidel and Thomas, see [19, Theorem 1.2].

Remark 1.5 By [8, Exercise 8.5] the effect of the spherical twist TS on an object G ∈ Db(X) can
be described by the following distinguished triangle:

TS(G)[−1] −→ RHom(S,G)⊗ S −→ G −→ TS(G).

As the spherical twist TS is an autoequivalence one can also study the inverse T−1
S . For any object

G ∈ Db(X) there exists the following distinguished triangle, see [8, Remark 8.11]:

T−1
S (G) −→ G −→ RHom(S,G)⊗ S[d] −→ T−1

S (G)[1].

We are also interested in another class of integral functors, the so-called Pn-functors, which
were introduced by Addington in a very general setting in [1, §4]. We will only need the following
special example:

Example 1.6 Let X be a K3 surface, then the integral functor

Φ : Db(X) −→ Db(X [k])

whose kernel is the universal ideal sheaf IZ on X × X [k] is a Pk−1-functor with corresponding
autoequivalence H = [−2] by [1, Theorem 3.1, Example 4.2(2)].

Remark 1.7 The fact that the above integral functor Φ is a Pk−1-functor with the corresponding
autoequivalence H = [−2] has the following useful consequence, see [2, §2.1]: for any E,F ∈ Db(X)
we have an isomorphism of graded vector spaces

Ext∗X[k](Φ(E),Φ(F )) ∼= Ext∗X(E,F )⊗H∗(Pk−1,C).

2 K3 surfaces with Picard number one

Throughout this section we assume X is a K3 surface such that NS(X) = Zh, where h is an ample
class with h2 = 4k. We denote the line bundle associated to h by OX(1) and the Hilbert scheme
of length k subschemes of X by X [k].
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2.1 Explicit construction of a universal family

In this subsection we generalize [10, Example 5.3.7] to give an explicit construction of a universal
family of stable vector bundles on X parametrized by the Hilbert scheme X [k] for k ! 1. Let h be
the ample generator of NS(X) and v = (k + 1,−h, 1) ∈ H∗

alg(X,Z). We have the following facts:

Lemma 2.1 The moduli space Mh(v) of µh-stable sheaves on X with Mukai vector v is a smooth
projective variety of dimension 2k and a fine moduli space. Furthermore every point [E] ∈ Mh(v)
represents a locally free sheaf.

Proof. We note that every µh-semistable sheaf E with v(E) = v is µh-stable as ρ(X) = 1. Thus
Mh(v) is a smooth projective variety. We compute:

dim(Mh(v)) = v2 + 2 = 4k − 2(k + 1) + 2 = 2k.

Furthermore v′ = (k + 1,−h, a) with a ! 2 satisfies

v′2 + 2 = 4k − 2a(k + 1) + 2 # 4k − 4(k + 1) + 2 = −2 < 0,

and thus the second Chern class is minimal (here c2(E) = 3k). This minimality implies that every
point [E] in Mh(v) is given by a locally free sheaf E. The condition gcd(k + 1, 1) = 1 implies that
Mh(v) is a fine moduli space by [10, Remark 4.6.8].

The following lemma produces examples of elements in this moduli space:

Lemma 2.2 For any [Z] ∈ X [k] the sheaf IZ(1) is globally generated, i.e. the evaluation morphism

ev : H0(IZ(1))⊗OX → IZ(1)

is surjective. Furthermore EZ := ker(ev) is a µh-stable locally free sheaf with Mukai vector given
by v(EZ) = (k + 1,−h, 1).

Proof. The standard exact sequence

0 IZ(1) OX(1) OZ(1) 0 (1)

shows

χ(IZ(1)) = χ(OX(1))− χ(OZ(1)) = (2k + 2)− k = k + 2.

Since Z has codimension two in X, using Serre duality gives

H2(IZ(1)) ∼= Hom(IZ(1),OX)∨ ∼= H0(OX(−1))∨ = 0.

By [5, Proposition 3.7], the line bundle OX(1) is k-very ample which implies that the exact
sequence of global sections attached to (1)

0 H0(IZ(1)) H0(OX(1)) H0(OZ(1)) 0

is still exact. This implies H1(IZ(1)) ∼= H1(OX(1)) = 0 and thus

dim(H0(IZ(1))) = χ(IZ(1)) = k + 2.

Now if the evaluation map is not surjective, let Q := coker(ev) and pick x ∈ supp(Q). Then we
have an exact sequence

0 IZ′(1) IZ(1) Ox 0

for a length k + 1 subscheme Z ′ containing Z.
Since IZ(1) is not globally generated at x the last exact sequence gives isomorphisms

H0(IZ′(1)) ∼= H0(IZ(1)) and H1(IZ′(1)) ∼= H0(Ox) ∕= 0.

But OX(1) is k-very ample so by definition

0 H0(IZ′(1)) H0(OX(1)) H0(OZ′(1)) 0
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is still exact, which implies H1(IZ′(1)) = 0, a contradiction. So ev is indeed surjective and we have
an exact sequence:

0 EZ H0(IZ(1))⊗OX IZ(1) 0. (2)

Computing invariants shows rk(EZ) = k + 1, c1(EZ) = −h and c2(EZ) = 3k, hence indeed
v(EZ) = (k + 1,−h, 1). The sheaf EZ is locally free as it is the kernel of a morphism between
a locally free and a torsion free sheaf on a smooth surface. The stability of EZ follows from [23,
Lemma 2.1 (2-2)].

We can globalize the construction in Lemma 2.2: let Z ⊂ X×X [k] denote the universal length k
subscheme, IZ its ideal sheaf. There are projections p : X×X [k] → X [k] as well as q : X×X [k] → X.
Define a sheaf E on X ×X [k] by the exact sequence

0 E p∗(p∗(IZ ⊗ q∗ OX(1))) IZ ⊗ q∗ OX(1) 0. (3)

Then E is p-flat and E|p−1(Z)
∼= EZ , which implies that E is locally free on X×X [k] by [10, Lemma

2.1.7]. Thus E defines a classifying morphism

ϕ : X [k] → Mh(v), [Z] *→ [EZ ] .

In fact we have:

Theorem 2.3 The classifying morphism ϕ : X [k] → Mh(v) is an isomorphism.

Proof. Looking at Remark 1.5 we see that the sheaf EZ defined by the exact seqeunce (2) is nothing
but the shifted spherical twist of IZ(1) around OX , more exactly we have

EZ = TOX
(IZ(1))[1],

similar to [9, Example 10.3.6]. By Proposition 1.4 the spherical twist TOX
is an autoequivalence of

Db(X) likewise is the shift [1]. But then the classifying morphism

ϕ : X [k] → Mh(v), [Z] *→ [EZ ] = [TOX
(IZ(1))[1]]

is a composition of autoequivalences and thus maps non-isomorphic objects to non-isomorphic
objects, hence ϕ is injective on closed points. Since bothX [k] andMh(v) are smooth of dimension 2k
the morphism ϕ is an open embedding and thus an isomorphism as both spaces are irreducible.

2.2 Stability of wrong-way fibers

In the above section, we explicitly constructed a universal family E , which is a locally free sheaf
on X × X [k]. In this section we take the alternative point of view and consider E as a family of
vector bundles on X [k] parametrized by X. A “wrong-way fiber” of E is just the restriction of E
over a point x ∈ X which gives a locally free sheaf on X [k].

More precisely, we first note that by standard cohomology and base change arguments

p∗(IZ ⊗ q∗ OX(1))⊗O[Z] → H0(IZ(1))

is an isomorphism. Hence
K := p∗(IZ ⊗ q∗ OX(1)) (4)

is a locally free sheaf of rank k+2 on X [k]. This implies that E is not only p-flat, but also q-flat since
IZ ⊗ q∗ OX(1) is both p- and q-flat by [14, Theorem 2.1]. Thus we can restrict the exact sequence
(3) to the fiber over a point x ∈ X and get the following description of the fiber Ex := E|q−1(x):

0 Ex K ISx 0, (5)

where Sx :=
$
[Z] ∈ X [k] |x ∈ supp(Z)

%
is a codimension 2 subscheme of X [k]. Hence Ex is a locally

free sheaf of rank k + 1 on X [k].
Before proving the stability of Ex with respect to some ample class H ∈ NS(X [k]), we recall

that for any coherent sheaf F on X there is the associated coherent tautological sheaf F [k] on X [k]

defined by
F [k] := p∗ (q

∗F ⊗OZ) . (6)
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If F is locally free of rank r then F [k] is locally free of rank kr.

Also recall the well-known fact that NS(X [k]) = NS(X)k ⊕ Zδ. Here dk is the divisor class on
X [k] induced by the divisor class d on X and δ is a divisor class on X [k] such that 2δ = [E] where
E is the exceptional divisor of the Hilbert-Chow morphism X [k] → X(k). In our case this reads

NS(X [k]) = Zhk ⊕ Zδ.

Lemma 2.4 We have c1(Ex) = −hk + δ.

Proof. There is the exact sequence:

0 p∗(IZ ⊗ q∗ OX(1)) p∗q
∗ OX(1) p∗(OZ ⊗q∗ OX(1)) 0

as R1p∗(IZ ⊗ q∗ OX(1)) = 0 since H1(IZ(1)) = 0 for all [Z] ∈ X [k].

We also have

p∗q
∗ OX(1) ∼= H0(OX(1))⊗OX[k]

and the sheaf p∗(OZ ⊗q∗ OX(1)) is nothing but the tautological sheaf OX(1)[k] associated to OX(1)
on X [k]. By [11, Remark 3.20.] we also have H0(OX(1)[k]) = H0(OX(1)). Thus, the above exact
sequence can be rewritten as

0 K H0(OX(1)[k])⊗OX[k] OX(1)[k] 0. (7)

Using [21, Lemma 1.5] we get

c1(K) = −c1(OX(1)[k]) = −hk + δ.

Now exact sequence (5) gives c1(Ex) = c1(K) = −hk + δ.

To compute slopes on X [k] we need the following intersection numbers, which can, for example,
be found in [21, Lemma 1.10]:

Lemma 2.5 For the classes hk and δ from NS(X [k]) we have:

• h2k
k = (2k−1)!

(k−1)!2k−1 (h
2)k = (2k−1)!2k+1

(k−1)! kk > 0

• h2k−1
k δ = 0.

We also recall the notations introduced in [20, §1]. The ample divisor h on X naturally induces
an ample divisor

hXk =

k&

i=1

q∗i h

on Xk, where qi denotes the projection from Xk to the i-th factor, as well as a semi-ample divisor
hk on X [k].

Moreover, we write Xk
◦ , S

kX◦ and X
[k]
◦ for the loci of the relevant spaces parametrizing distinct

points. Then the natural map

σ◦ : Xk
◦ → X

[k]
◦

is an étale cover and j : Xk
◦ → Xk is an open embedding. For any coherent sheaf F on X [k], we

denote by F◦ the restriction of F to X
[k]
◦ , and define

(F )Xk = j∗(σ
∗
◦(F◦))

which is a torsion free coherent sheaf if F is.

Proposition 2.6 The vector bundle K defined in (4) is slope stable with respect to hk.
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Proof. We follow the idea in the proof of [20, Theorem 1.4].
Since (−)◦ and σ∗

◦(−) are exact, and j∗(−) is left exact, by applying these functors to (7) we
obtain an exact sequence of Sn-invariant reflexive sheaves on Xk as follows

0 −→ (K)Xk −→ (H0(OX(1))⊗OX[k])Xk
ϕ−→ (OX(1)[k])Xk

where ϕ is not necessarily surjective. It is clear that

(H0(OX(1))⊗OX[k])Xk = H0(OX(1))⊗OXk ,

and we also have

(OX(1)[k])Xk =

k&

i=1

q∗i OX(1)

by [20, Lemma 1.1]. Hence the above sequence becomes

0 −→ (K)Xk −→ H0(OX(1))⊗OXk
ϕ−→

k&

i=1

q∗i OX(1) (8)

where ϕ is the evaluation map on Xk
◦ .

More precisely, for any set of closed points (x1, . . . , xn) ∈ Xk with xi ∕= xj , the morphism of
fibers can be identified as

ϕ(x1,...,xk) : H
0(OX(1)) −→

k&

i=1

OX(1)xi

s *−→ (s(x1), . . . , s(xk))

Since for any non-trivial s ∈ H0(OX(1)), there are always (many choices of) distinct points
(x1, . . . xk) ∈ Xk such that (s(x1), . . . , s(xk)) ∕= (0, . . . , 0), we conclude that the map of global
sections

H0(ϕ) : H0(OX(1)) −→ H0(

k&

i=1

q∗i OX(1))

is injective. It follows by exact sequence (8) that (K)Xk has no global sections, that is

H0((K)Xk) = 0. (9)

Note that ϕ is surjective on Xk
◦ , hence coker(ϕ) is supported on the big diagonal of Xk which

is of codimension 2. It follows that

c1((K)Xk) = −
k'

i=1

q∗i h.

We claim that (K)Xk has no Sk-invariant subsheaf which is destabilizing with respect to hXk .
Indeed, assume F is an Sk-invariant subsheaf of (K)Xk , then for some a ∈ Z:

c1(F ) = a(

k'

i=1

q∗i h).

If a # −1, then
c1(F )h2k−1

Xk # c1((K)Xk)h2k−1
Xk < 0

Since 1 # rk(F ) < rk((K)Xk), it follows that µh
Xk

(F ) < µh
Xk

((K)Xk), hence F is not destabiliz-
ing.

If a = 0, we choose a (not necessarily Sk-invariant) non-zero stable subsheaf F ′ ⊆ F which
has maximal slope with respect to hXk (e.g. one can take a stable factor in the first Harder-
Narasimhan factor of F ). Without loss of generality, we can assume F and F ′ are both reflexive.
Since F ′ is also a subsheaf of H0(OX(1))⊗OXk , there must be a projection from H0(OX(1))⊗OXk

to a certain direct summand of it, such that the composition of the embedding and projection
F ′ → H0(OX(1)) ⊗ OXk → OXk is non-zero. Since µXk(F ′) ! µXk(F ) = 0 = µXk(OXk), and
OXk is also stable with respect to hXk , the map F ′ → OXk must be injective, and its cokernel is
supported on a locus of codimension at least 2. Since both are reflexive, we must have F ′ = OXk .
Therefore F , and consequently (K)Xk , have non-trivial global sections. This contradicts (9).

If a ! 1, F would be a subsheaf of the trivial bundle H0(OX(1)) ⊗ OXk of positive slope.
Contradiction.

Finally, assume G is a reflexive subsheaf of K. Then (G)Xk is an Sk-invariant reflexive subsheaf
of (K)Xk . By the above claim we have µh

Xk
((G)Xk) < µh

Xk
((K)Xk). It follows by [20, Lemma

1.2] that µhk
(G) < µhk

(K). Therefore K is slope stable with respect to hk, as desired.
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Proposition 2.7 For any closed point x ∈ X, the bundle Ex is slope stable with respect to hk.

Proof. By Lemma 2.4, we have c1(Ex) = c1(K) = −hk + δ. Therefore by Lemma 2.5

c1(Ex)h
2k−1
k = c1(K)h2k−1

k = (−hk + δ)h2k−1
k = −h2k

k < 0.

Assume F is a destabilizing subsheaf of Ex with 1 # rk(F ) # k and c1(F ) = ahk + bδ for some
a, b ∈ Z. Then

c1(F )h2k−1
k = ah2k

k .

By the assumption and Proposition 2.6, we have the inequality

µhk
(Ex) # µhk

(F ) < µhk
(K),

which can be written as

−h2k
k

k + 1
# ah2k

k

rk(F )
<

−h2k
k

k + 2
⇐⇒ − rk(F )

k + 1
# a < − rk(F )

k + 2
as h2k

k > 0.

Such an integer a cannot exist. Contradiction. Hence Ex is stable with respect to hk.

2.3 A smooth connected component

In this section, we will interpret the universal sheaf E defined in (3) as a family of stable sheaves
on X [k] whose base is a smooth connected component of the corresponding moduli space. We have
shown above that each wrong-way fiber Ex of the family E is µhk

-stable; however, it would be
more preferable to establish the stability with respect to some ample class on X [k]. Although the
perturbation technique in [20, Proposition 4.8] can be used to achieve this for every single Ex, for
our purpose we will have to extend this technique to prove that all sheaves Ex are slope stable
with respect to the same ample class near hk.

Theorem 2.8 There exists some ample class H ∈ NS(X [k]) near hk, such that Ex is µH-stable
for all x ∈ X simultaneously.

Proof. Proposition 2.7 and [4, Theorem 2.3.1] guarantees that the assumptions in [20, Proposition
4.8] are satisfied for each Ex, hence every Ex is slope stable with respect to some ample class near
hk by [20, Proposition 4.8]. In order to find a single ample class H that is independent of the
choice of Ex, we can literally use the entire proof of [20, Proposition 4.8] except that we need to
reconstruct the non-empty convex open set U so that α := h2k−1

k is in the closure of U , and for
every γ ∈ U , Ex is stable with respect to γ for all x ∈ X.

We follow the notations in [7, Definition 3.1]. For each x ∈ X, SStab(Ex) is a convex closed set
containing α. Hence the intersection

U := ∩x∈X SStab(Ex)

is also a convex closed set containing α. We first claim that [7, Theorem 3.4] holds for all Ex

simultaneously; namely, we will show that for any β ∈ Mov(X [k])◦ (see [7, Definition 2.1] for the
notation), there exists a number e ∈ Q+, such that (α+εβ) ∈ ∩x∈X Stab(Ex) for any real ε ∈ [0, e].

To prove the claim, we first note that the slope c := µβ(Ex) is independent of the choice of
x ∈ X. We redefine the set S in the proof of [7, Theorem 3.4] to be

S := {c1(F ) | F ⊆ Ex for some x ∈ X such that µβ(F ) ! c}.

Since Ex ⊆ K for all x ∈ X by (5), we obtain that S is a subset of

T := {c1(F ) | F ⊆ K such that µβ(F ) ! c},

which is finite by [7, Theorem 2.29], hence S is also finite. We can then use the rest of the proof of
[7, Theorem 3.4] literally to conclude the claim.

We then claim that U is of full dimension r := rkN1(X
[k]). If not, then we have α ∈ U ⊆ L

for some hyperplane L ⊂ N1(X
[k])R. Since Mov(X [k]) is of full dimension, we can choose some

β ∈ Mov(X [k])◦ \ L. It follows that (α + εβ) ∈ U \ L for some small ε > 0 by the previous claim
and the choice of β. Contradiction.

We define U to be the interior of U and claim that U is non-empty. Indeed, since U is of
full dimension r, we can choose r + 1 points of U in general positions, which form an r-simplex.
By the convexity of U , the entire simplex is in U hence any interior point of the simplex is also
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an interior point of U . The convexity of U follows from the convexity of U . And it is clear from
the construction that α = h2k−1

k is in the closure of U . We finally claim that every γ ∈ U is
in ∩x∈X Stab(Ex). If not, suppose that there exists some γ0 ∈ U and some x0 ∈ X, such that
γ0 ∈ SStab(Ex0

)\Stab(Ex0
); namely, µγ0

(F ) = µγ0
(Ex0

) for some proper subsheaf F of Ex0
. Since

the slope function is linear with respect to the curve class, and µα(F ) < µα(Ex0) by Proposition
2.7, one can find a hyperplane in N1(X [k])R through γ0, such that µγ(Ex0)−µγ(F ) takes opposite
signs for γ in the two open half-spaces separated by the hyperplane. In particular, F destabilizes
Ex0 in one of the half-spaces. Since U has non-empty intersection with both half-spaces, this
contradicts the condition U ⊆ SStab(Ex). Therefore we have U ⊆ ∩x∈X Stab(Ex), as desired.

We give an alternative description of Ex using the integral functor Φ from Example 1.6:

Lemma 2.9 For each x ∈ X, let Ix be the ideal sheaf of x ∈ X, then Ex = Φ(Ix(1)).

Proof. We start with the exact sequence

0 Ex K ISx 0. (10)

We note that ISx = Φ(Ox) as IZ is flat over X. Furthermore we have K = Φ(OX(1)) since
Rip∗(IZ ⊗q∗ OX(1)) = 0 for i = 1, 2 as this is true for Hi(IZ(1)) for any [Z] ∈ X [k]. These two
facts imply that

HomX[k](K, ISx) = HomX[k](Φ(OX(1)),Φ(Ox)) ∼= HomX(OX(1),Ox) ∼= C

by Remark 1.7. Thus the exact sequence (10) is induced by the exact sequence

0 Ix(1) OX(1) Ox 0.

As K → ISx
is surjective, applying Φ to the last exact sequence shows Ex = Φ(Ix(1)).

We return to the main result of the section. Let H be an ample class that satisfies Theorem
2.8, and M the moduli space of µH -stable sheaves on X [k] with the same numerical invariants as
Ex. Then the universal family E defines a classifying morphism

f : X −→ M, x *−→ [Ex] (11)

In fact the morphism f can be described as follows:

Theorem 2.10 The classifying morphism (11) defined by the family E identifies X with a smooth
connected component of M.

Proof. By [17, Lemma 1.6] we have to prove that f is injective on closed points and that for all
x ∈ X we have dim(T[Ex]M) = 2 .

Now by Lemma 2.9 we know Ex = Φ(Ix(1)), so for x ∕= y we find

HomX[k](Ex, Ey) = HomX[k](Φ(Ix(1)),Φ(Iy(1)))
∼= HomX(Ix(1), Iy(1))
∼= HomX(Ox,Oy) = 0

by Remark 1.7 again. This implies f is injective on closed points.
A similar computation shows

Ext1X[k](Ex, Ex) = Ext1X[k](Φ(Ix(1)),Φ(Ix(1)))

∼= Ext1X(Ix(1), Ix(1))

∼= Ext1X(Ox,Ox) ∼= TxX.

Using T[Ex]M ∼= Ext1X[k](Ex, Ex) we thus find dim(T[Ex]M) = 2 as desired.

3 K3 surfaces with Picard number two

In this section, we will consider a K3 surface X of Picard number 2, and construct a complete
family of stable vector bundles on the Hilbert scheme X [k] for k ! 2.
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3.1 The K3 surface

In this section we assume X is a K3 surface with

NS(X) = Ze⊕ Zf

such that e2 = −2k, f2 = 0 and ef = 2k + 1 for some integer k ! 2. The existence of such K3
surfaces is guaranteed by [9, Corollary 14.3.1]. Since f2 = 0, either f or −f is effective. Without
loss of generality, we will assume that the divisor class f is effective, after possibly replacing the
pair (e, f) by (−e,−f).

In this subsection we collect some helpful properties of X which will be used in the construction
of some moduli spaces of stable sheaves in the next section.

Lemma 3.1 We have D2 ! 0 for all effective divisors on X. Especially there are no smooth curves
C on X with C ∼= P1.

Proof. Any irreducible curve C on S satisfies

C2 = C(C +KX) = 2pa(C)− 2 ! −2.

So assume C2 = −2 and write C = me+ nf . Then we have

C2 = (me+ nf)2 = m2e2 + 2mnef

= −2km2 + 2(2k + 1)mn

= −2m(km− (2k + 1)n).

The equation C2 = −2 translates into m(km− (2k+ 1)n) = 1. This implies m = ±1 but then one
can see that there is no n ∈ Z satisfying this equation.

Lemma 3.2 The divisor classes h = e+ (2k − 1)f and (h = (2k)e+ (2k − 1)f are ample.

Proof. We have

h2 = (e+ (2k − 1)f)2 = e2 + 2(2k − 1)ef

= −2k + 2(2k − 1)(2k + 1) = 8k2 − 2k − 2.

So h2 > 0 as k ! 2. Since also hf = ef = 2k + 1 > 0 we see that h is ample by the remark after
[9, Corollary 8.1.7].

A similar computation shows (h2 > 0 and (hf > 0.

Lemma 3.3 Let m and n be integers. If the class me+nf is effective, then 0 # m # 2k+1
k n (thus

in particular n ! 0). Furthermore h(me+ nf) ! ((2k − 1)(2k + 1)− k)m.

Proof. Let D be an effective divisor with class me + nf . Since the claim is additive in m and n,
we may assume w.l.o.g. that D is an irreducible curve C.

By Lemma 3.1 we have C2 ! 0. Therefore

C2 = 2m {−km+ (2k + 1)n} ! 0

hC = (4k2 − k − 1)m+ {−km+ (2k + 1)n} > 0

which implies m ! 0 and −km+ (2k + 1)n ! 0. The last inequality can also be read as

(2k + 1)n ! km ⇔ m # 2k + 1

k
n.

Putting everything together shows

0 # m # 2k + 1

k
n

as well as hC ! ((2k − 1)(2k + 1)− k)m.

Corollary 3.4 There is a surjective morphism π : X → P1 such that all fibers are integral curves
of arithmetic genus pa(C) = 1, that is X is elliptically fibered.

Proof. Since f2 = 0 it is known that the linear system |f | induces a surjective map π : X → P1

with π∗ OP1(1) = OX(f). By the previous lemma the class f cannot be the sum of two effective
divisors, hence all fibers C of π are integral and have pa(C) = 1.
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Lemma 3.5 Let [Z] ∈ X [k]. Assume R is a torsion quotient of IZ(e) with c1(R) = nf for some
n ! 0, then H1(R) = 0.

Proof. The quotient defines the following exact sequence:

0 K IZ(e) R 0.

Now K is torsion free of rank one, so its double dual K∗∗ is locally free of rank one and the natural
map K → K∗∗ is injective and the cokernel T has finite support. Especially c1(T ) = 0 so

c1(K
∗∗) = c1(K) = c1(IZ(e))− c1(R) = e− nf

and thus K∗∗ ∼= OX(e− nf). The embedding K ↩→ IZ(e) induces an embedding

K∗∗ ∼= OX(e− nf) ↩→ OX(e).

This embedding is given by a global section of OX(nf), that is by an effective divisor D =
)

i aiCi

with class nf .
This global section is the pullback along the elliptic fibration π of a global section of OP1(n),

with corresponding effective divisor
)

i aizi on P1, here Ci = π−1(zi).
Denote by D ⊂ X also the corresponding closed subscheme (which maybe non-reduced, if

ai ! 2 for some i). We get the commutative diagram

0 0

0 K OX(e− nf) T 0

0 IZ(e) OX(e) OZ 0

R OD(e)

0 0

α

β

The snake lemma gives an exact sequence

0 ker(α) R OD(e) coker(α) 0.
β

Let R′ ⊂ OD(e) be the image of β. Since the torsion sheaf O!
i aizi on P1 has a composition series

by skyscraper sheaves Ozi as composition factors, OD has a composition series with composition
factors OCi

, thus OD(e) has a composition series with composition factors OCi
(e). The latter is a

line bundle of degree
e · Ci = ef = 2k + 1

on Ci. The quotient OD(e)/R′ is isomorphic to coker(α), that is to a quotient Q of OZ . By
intersecting with R′ we get a composition series for R′ with composition factors which are kernels
of a surjection OCi(e) ↠ Q′ with Q′ of length # k. Thus we have exact sequences:

0 L OCi(e) Q′ 0,

with a torsion free sheaf L of rank one on the integral projective curve Ci of arithmetic genus one.
Using χ(OCi) = 0 and

χ(L) = χ(OCi(e))− χ(Q′) ! k + 1,

gives
deg(OCi(e)) ! deg(L) ! k + 1.

By [6, Proposition 4.6.] all of these composition factors have trivial H1. By constructing short
exact sequences out of the composition series and using the induced exact sequences for H1, it
follows

H1(R′) = 0.

As ker(β) = ker(α) ⊆ T has finite support, we also have H1(ker(β)) = 0. Hence

H1(R) = 0.
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3.2 The construction of a universal family

In this subsection we want to generalize [16, Theorem 1.2]. Let h be the ample line bundle defined
in Lemma 3.2, and v = (2k − 1, h, 2k) ∈ H∗

alg(X,Z) for any integer k ! 2. We immediately have
the following result:

Lemma 3.6 The moduli space Mh(v) of µh-stable sheaves on X with Mukai vector v is a smooth
projective variety of dimension 2k and a fine moduli space, and every point [E] ∈ Mh(v) represents
a locally free sheaf.

Proof. We first observe by [10, Lemma 1.2.7] that every µh-semistable sheaf E with v(E) = v is
µh-stable since gcd(2k − 1, h2) = 1. Thus Mh(v) is a smooth projective variety. We compute:

dim(Mh(v)) = v2 + 2 = (8k2 − 2k − 2)− 2(2k − 1)(2k) + 2 = 2k.

Furthermore v′ = (2k − 1, h, a) with a ! 2k + 1 satisfies

v′2 + 2 = h2 − 2a(2k − 1) + 2 # (8k2 − 2k − 2)− 2(2k − 1)(2k + 1) + 2 = 2− 2k < 0,

so again every point [E] in Mh(v) is locally free. The condition gcd(2k − 1, h2) = 1 also implies
that Mh(v) is a fine moduli space.

In the following discussion, we will explicitly construct a universal family for the moduli space
Mh(v). We first define some integral functors. For any line bundle L on X, we define

ML : Db(X) −→ Db(X); (−) *−→ (−)⊗ L.

Then we consider the composition

Θ := MOX(f) ◦ T−1
OX

◦MOX(e) : D
b(X) −→ Db(X), (12)

where T−1
OX

is the inverse of the spherical twist induced by OX . It is clear that Θ is an autoe-

quivalence of Db(X) hence a Fourier-Mukai transform. We denote the corresponding kernel by
P ∈ Db(X ×X). By Remark 1.5, we have an explicit description of P by the exact triangle

P −→ ∆∗ OX(e+ f) −→ OX(e)⊠OX(f)[2] −→ P[1], (13)

where ∆ : X ↩→ X × X is the diagonal embedding. The kernel P also defines a Fourier-Mukai
transform in the opposite direction, which we denote by

(Θ : Db(X) −→ Db(X).

Since the kernel of each composition factor in (12), viewed as an object in Db(X × X), remains
the same under the permutation of the two copies of X, it follows that

(Θ = MOX(e) ◦ T−1
OX

◦MOX(f). (14)

For any [Z] ∈ X [k], we apply Θ on the ideal sheaf IZ and define

EZ := Θ(IZ).

A priori EZ is a derived object on X, but we can show the following:

Theorem 3.7 EZ is µh-stable locally free sheaf with Mukai vector v(EZ) = (2k − 1, h, 2k).

Proof. First of all, by (12) and [8, Lemma 8.12], a standard computation of the cohomological
Fourier-Mukai transform shows that

v(EZ) = (2k − 1, h, 2k).

Moreover, by (13) and the fact that T−1
OX

(OX) = OX [1], we obtain an exact triangle

EZ −→ IZ(e+ f) −→ H∗(IZ(e))⊗OX(f)[2] −→ EZ [1]. (15)

In order to compute H∗(IZ(e)), we observe by Lemma 3.3 that

h0(OX(e)) = 0 and h2(OX(e)) = h0(OX(−e)) = 0. (16)



Stability of some vector bundles on Hilbert schemes of points on K3 surfaces 13

It follows by a long exact sequence of cohomology groups that

h0(IZ(e)) = h2(IZ(e)) = 0.

Therefore the exact triangle (15) reduces to the short exact sequence

0 −→ H1(IZ(e))⊗OX(f) −→ EZ −→ IZ(e+ f) −→ 0, (17)

where dimH1(IZ(e)) = rk(EZ)− 1 = 2k− 2. For the convenience of analyzing the stability of EZ ,
we rewrite the above exact triangle as

0 −→ O⊕(2k−2)
X −→ EZ(−f) −→ IZ(e) −→ 0.

Furthermore, we observe that OX(f) = Θ(OX(−e)[−1]). Since Θ is an equivalence, we have

Hom(EZ(−f),OX) = Hom(EZ ,OX(f)) = Hom(IZ ,OX(−e)[−1]) = 0.

We are now ready to prove that EZ , or rather EZ(−f), is µh-stable. We first have

µh(EZ(−f)) =
eh

2k − 1
=

−2k + (2k − 1)(2k + 1)

2k − 1
= 2k + 1− 2k

2k − 1
> 0.

Pick a torsion free quotient F of EZ(−f) with 1 # rk(F ) # 2k − 2. We have

EZ(−f) F 0

with Hom(F,OX) ↩→ Hom(EZ(−f),OX) = 0.
We want to show that we always have µh(F ) > µh(EZ(−f)). For this, define the torsion free

sheaf F0 as the image of the composition

O⊕(2k−2)
X EZ(−f) F.

We get a surjection

O⊕(2k−2)
X F0 0.

This implies that c1(F0) is effective and we have the following commutative diagram:

0 0 0

0 K0 K1 K2 0

0 O⊕(2k−2)
X EZ(−f) IZ(e) 0

0 F0 F F1 0

0 0 0

(18)

Due to the diagram rk(F1) ∈ {0, 1}.

Case 1: rk(F1) = 1. Then rk(F0) = rk(F )− 1 and F1
∼= IZ(e). We conclude

c1(F ) = c1(F0) + c1(IZ(e)) ⇒ c1(F ) = c1(F0) + e.

Using this we find:

µh(F ) =
c1(F )h

rk(F )
=

c1(F0)h

rk(F )* +, -
!0

+
eh

rk(F )
>

eh

2k − 1
= µh(EZ(−f)).

So we indeed have µh(F ) > µh(Ex(−f)).
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Case 2: rk(F1) = 0. Now rk(F0) = rk(F ). Write c1(F ) = me+ nf . Since c1(F0) and c1(F1) are
effective, so is their sum c1(F ), which by Lemma 3.3 implies, that m ! 0 as well as

µh(F ) =
(me+ nf)h

rk(F )
! m((2k − 1)(2k + 1)− k)

rk(F )
! m(2k + 1− k

2k − 1
).

For m ! 1 we have

µh(F ) ! m(2k + 1− k

2k − 1
)

! 2k + 1− k

2k − 1

> 2k + 1− 2k

2k − 1
= µh(EZ(−f))

So only the case m = 0 remains, i.e. c1(F ) = nf . We have

µh(F ) =
n(2k + 1)

rk(F )
.

If we can prove n ! rk(F ) we are done since then

µh(F ) ! 2k + 1 > 2k + 1− 2k

2k − 1
= µh(EZ(−f)).

As c1(F ) = nf is the sum of the two effective divisors c1(F0) and c1(F1), it follows from Lemma
3.3 that c1(F0) = n0f and c1(F1) = n1f with n0, n1 ! 0 and n0 + n1 = n.

By Lemma 3.5 we have H1(F1) = 0 which implies Ext1(F1,OX) = 0 using Serre duality. So
the restriction map

Hom(F,OX) → Hom(F0,OX)

surjective. But we know Hom(F,OX) = 0. So

Hom(F0,OX) = 0. (19)

Using the elliptic fibration π : X → P1 we have:

h0(det(F0)) = h0(OX(n0f)) = n0 + 1. (20)

Now there is a trivial sub-bundle in O⊕(2k−2)
X of rank rk(F ) + 1 such that

O⊕(rk(F )+1)
X F0

ϕ

is surjective outside a finite subset of X by [3, Lemma 4.60].

Define R := coker(ϕ). Then there is the exact sequence:

0 F ′
0 F0 R 0.

As R has finite support, we get:

det(F0) = det(F ′
0) as well as H

2(F ′
0)

∼= H2(F0).

We also have the exact sequence

0 det(F0)
−1 O⊕(rk(F )+1)

X F ′
0 0.

The end of the induced long cohomology sequence gives:

H1(F ′
0) H2(det(F0)

−1) H2(O⊕(rk(F )+1)
X ) H2(F ′

0) 0. (21)

It follows from (19) by Serre duality that

H2(F ′
0)

∼= H2(F0) ∼= Hom(F0,OX)∨ = 0.
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Since H2(F ′
0) = 0, we apply Serre duality again and obtain from (21) that

0 H0(O⊕(rk(F )+1)
X ) H0(det(F0)).

We conclude
h0(det(F0)) ! rk(F ) + 1.

Using this inequality together with (20) we get:

n0 + 1 = h0(det(F0)) ! rk(F ) + 1 ⇒ n0 ! rk(F ) ⇒ n ! rk(F ).

We obtain the desired inequality between n and rk(F ), hence EZ(−f) is stable, and so is EZ . It
then follows by Lemma 3.6 that EZ is locally free.

We want to globalize the previous construction. For this we denote the universal closed sub-
scheme of length n by Z ⊂ X ×X [k], and the universal ideal sheaf by IZ . As a kernel, IZ induces
a pair of integral functors (in opposite directions):

Φ : Db(X) −→ Db(X [k]) and (Φ : Db(X [k]) −→ Db(X).

Here Φ is a Pk−1-functor, see Example 1.6.
The composition of the integral functors

Θ ◦ (Φ : Db(X [k]) −→ Db(X)

is still an integral functor, whose kernel E ∈ Db(X [k] × X) can be computed from P and IZ
explicitly. More precisely, let π12, π23 and π13 be projections from X [k] × X × X to each pair of
factors, then

E = Rπ13∗(π
∗
12IZ ⊗ π∗

23P);

see [8, Proposition 5.10]. We have the following property about E :

Proposition 3.8 E is a locally free sheaf on X [k]×X such that E|{[Z]}×X
∼= EZ for any [Z] ∈ X [k].

Proof. For any [Z] ∈ X [k], the derived pullback of E to the fiber {[Z]}×X can be computed by

(Θ ◦ (Φ)(O[Z]) ∼= Θ(IZ) = EZ ,

which is a locally free sheaf by Theorem 3.7. It follows that E is a sheaf which is flat over X [k] by
[8, Lemma 3.31], and locally free by [10, Lemma 2.1.7].

In fact, E is a universal family for the fine moduli space Mh(v). More precisely, we have

Corollary 3.9 The family E induces an isomorphism X [k] ∼= Mh(v).

Proof. E induces a classifying morphism

ϕ : X [k] −→ Mh(v); [Z] *−→ [EZ ] .

Since Θ is an equivalence, we have EZ ∕∼= EZ′ for [Z] ∕= [Z ′], hence ϕ is injective, hence it is an
open embedding since X [k] and Mh(v) are both of dimension 2k. But X [k] is projective, so ϕ is
also closed. Since X [k] and Mh(v) are both irreducible, ϕ must be an isomorphism.

Remark 3.10 Although it is not strictly required in our following discussion, the universal family
E can in fact be given in a more explicit form similar to (17). To globalize the construction in
Theorem 3.7, we apply the functor Rπ13∗(π

∗
12IZ ⊗ π∗

23(−)) to (13) and obtain

E −→ Rπ13∗(π
∗
12IZ ⊗ π∗

23∆∗ OX(e+ f)) −→ Rπ13∗(π
∗
12IZ ⊗ π∗

2 OX(e)⊗ π∗
3 OX(f))[2] −→ E [1].

We denote the projections from X [k]×X to the two factors by p and q respectively. Then a simple
calculation reduces the above exact triangle to

E −→ IZ ⊗ q∗ OX(e+ f) −→ Rp∗(IZ ⊗ q∗ OX(e))⊠OX(f)[2] −→ E [1].

For the consistency with the following discussion, we denote

H := Rp∗(IZ ⊗ q∗ OX(e))[1] = Φ(OX(e))[1].

We will prove in Lemma 3.11 that H is in fact a sheaf. Therefore the exact triangle reduces to

0 −→ H⊠OX(f) −→ E −→ IZ ⊗ q∗ OX(e+ f) −→ 0.
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3.3 The wrong-way fibers

In this subsection we study the wrong-way fibers of E . For any x ∈ X, we define the corresponding
wrong-way fiber to be

Ex := E|X[k]×{x},

which is locally free of rank 2k − 1. As an alternative description, we consider the composition

Φ ◦ (Θ : Db(X) −→ Db(X [k]),

which is also an integral functor with kernel E , in the direction opposite to Θ ◦ (Φ. Then we have

Ex = (Φ ◦ (Θ)(Ox).

The following result gives a concrete description of Ex:

Lemma 3.11 The locally free sheaf Ex fits in an exact sequence of sheaves

0 H Ex ISx 0, (22)

where
H := Φ(OX(e))[1]

is locally free, and ISx is the ideal sheaf of

Sx :=
.
[Z] ∈ X [k]

///x ∈ supp(Z)
0
⊂ X [k].

Proof. We write Fx := (Θ(Ox), then Ex = Φ(Fx). By (14) we have Fx = T−1
OX

(Ox) ⊗ OX(e). By

applying the inverse spherical functor T−1
OX

on the exact sequence

0 −→ Ix −→ OX −→ Ox −→ 0

we obtain an exact triangle

T−1
OX

(Ix) −→ T−1
OX

(OX) −→ T−1
OX

(Ox) −→ T−1
OX

(Ix)[1].

Since TOX
(OX) = OX [−1] and TOX

(Ox) = Ix[1], the above triangle becomes

Ox[−1] −→ OX(e)[1] −→ Fx −→ Ox .

Since Φ(Ox) = ISx
, we further apply the integral functor Φ to obtain the exact triangle

ISx
[−1] −→ H −→ Ex −→ ISx

, (23)

where H = Φ(OX(e))[1]. To compute H, we observe that the short exact sequence of kernels

0 −→ IZ −→ OX[k]×X −→ OZ −→ 0

induces an exact triangle

Φ(OX(e)) −→ H∗(OX(e))⊗OX[k] −→ OX(e)[k] −→ Φ(OX(e))[1]. (24)

Since Hi(OX(e)) = 0 for i ∕= 1 by (16), the exact triangle (24) reduces to the short exact sequence

0 −→ OX(e)[k] −→ H −→ H1(OX(e))⊗OX[k] −→ 0,

which in particular implies that H is a locally free sheaf. It follows that the exact triangle (23)
reduces to the short exact sequence (22).

We will require a technical result in the proof of the stability. For this purpose, we define

IkX := (Xk ×SkX X [k])red

to be Haiman’s isospectral Hilbert scheme, and denote its projections to both factors by p and q
respectively. Then the derived McKay correspondence

Ψ := (−)Sk ◦ q∗ ◦ Lp∗ : Db(Xk)Sk −→ Db(X [k])

is an equivalence, and so is Ψ−1 : Db(X [k]) → Db(Xk)Sk . We have
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Lemma 3.12 For any coherent sheaf F on X [k], if Ψ−1(F ) is a reflexive sheaf, then

Ψ−1(F ) = (F )Xk .

Proof. We follow the above notation to denote

IkX◦ := Xk
◦ ×SkX◦ X

[k]
◦ ,

then we have the commutative diagram

X
[k]
◦ IkX◦ Xk

◦

X [k] IkX Xk,

α

p◦

β

q◦

j

q p

where α, β, j and q◦ are étale morphisms, and p◦ is an isomorphism. We also have

Ψ−1 ∼= Rp∗ ◦ q!,
(−)Xk = j∗ ◦ σ∗

◦ ◦ α∗,

where the first equation is due to the fact that Ψ−1 is the right adjoint of Ψ. It follows that

j∗ ◦Ψ−1 ∼= j∗ ◦Rp∗ ◦ q! ∼= p◦∗ ◦ β∗ ◦ q!

∼= p◦∗ ◦ β! ◦ q! ∼= p◦∗ ◦ q!◦ ◦ α!

∼= p◦∗ ◦ q∗◦ ◦ α∗ ∼= σ∗
◦ ◦ α∗.

Therefore we have

j∗ ◦ j∗ ◦Ψ−1 ∼= (−)Xk .

Since ∆ = Xk \Xk
◦ is of codimension 2, if Ψ−1(F ) is a reflexive sheaf, then we have

Ψ−1(F ) ∼= j∗ ◦ j∗ ◦Ψ−1(F ) ∼= (F )Xk

as desired.

Lemma 3.13 The sheaf (H)Xk fits in an exact sequence of Sk-invariant locally free sheaves

0 −→
k&

i=1

q∗i OX(e) −→ (H)Xk −→ H1(OX(e))⊗OXk −→ 0. (25)

Moreover, every Sk-invariant global section of (H)Xk vanishes; namely H0((H)Xk)Sk = 0.

Proof. By [12, Theorem 3.6], the composition Ψ−1 ◦ Φ : Db(X) → Db(Xn)Sk agrees with the
truncated universal ideal functor defined in [13, Definition 5.1], therefore we have an exact triangle

(Ψ−1 ◦ Φ)(OX(e)) −→ H∗(OX(e))⊗OXk
δ−→

k&

i=1

q∗i OX(e) −→ (Ψ−1 ◦ Φ)(OX(e))[1], (26)

where each component of δ is an evaluation map. Since H is a locally free sheaf by Lemma 3.11,
it follows by Lemma 3.12 that Ψ−1(H) = (H)Xk . Hence

(Ψ−1 ◦ Φ)(OX(e)) = Ψ−1(H)[−1] = (H)Xk [−1].

Together with (16), the exact triangle (26) becomes the short exact sequence (25), which is the

universal equivariant extension of OXk by
1k

i=1 q
∗
i OX(e) since δ is a collection of evaluation maps.

Therefore its induced connecting map in the long exact sequence of cohomology groups

H0
2
H1(OX(e))⊗OXk

3Sk −→ H1

4
k&

i=1

q∗i OX(e)

5Sk

is naturally an isomorphism, which implies H0((H)Xk)Sk = 0.
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We will eventually prove the stability of Ex with respect to some ample class H ∈ NS(X [k]).
Similar to the previous section we have

NS(X [k]) = Zek ⊕ Zfk ⊕ Zδ.

For any l ∈ NS(X) and any ample class h ∈ NS(X) we have the intersection numbers

lkh
2k−1
k =

(2k − 1)!

(k − 1)!2k−1
(lh)(h2)k−1,

δh2k−1
k = 0

by [21, Lemma 1.10]. Moreover, by Lemma 3.11 and [21, Lemma 1.5] we also have

c1(Ex) = c1(H) = c1(OX(e)[k]) = ek − δ.

It follows by the above formulas that for any ample class h ∈ NS(X), we have

c1(Ex)h
2k−1
k =

(2k − 1)!

(k − 1)!2k−1
(eh)(h2)k−1.

However, OX(e)[k] is a subsheaf of Ex with the same c1. For Ex to be µhk
-stable, it is necessary

to have eh < 0 since h2 > 0. An easy computation shows that this condition cannot be fulfilled by
the class h = e + (2k − 1)f from Lemma 3.2, so we cannot hope that Ex is µ-stable with respect

to the class hk induced by this h. However, for the class (h = (2k)e + (2k − 1)f from Lemma 3.2,
we do have

e(h = (2k)e2 + (2k − 1)ef

= −(4k2) + (4k2 − 1) = −1.

Indeed, in the rest of this subsection we will prove that Ex is µ-stable with respect to (hk. We use
the same notation as in Section 2.2 and also need the following formula: assume F is a coherent
sheaf on Xk with Sk-invariant Chern class

c1(F ) =

k'

i=1

q∗i c

where c ∈ NS(X), then the intersection number

c1(F )(h2k−1
Xk = ak(c · (h)((h2)k−1

where ak = k(2k−1)!
2k−1 ; see [21, Lemma 1.10]. The main result of this subsection is the following

Proposition 3.14 Ex is µ-stable with respect to (hk.

Proof. Assume that F is a reflexive subsheaf of Ex of rank 1 # r # 2k − 2. We need to show that
µ"hk

(F ) < µ"hk
(Ex). By [20, Lemma 1.2], it suffices to check that

µ"h
Xk

((F )Xk) < µ"h
Xk

((Ex)Xk),

where (F )Xk is an Sk-invariant subsheaf of (Ex)Xk .
We apply the functor j∗(σ

∗
k,◦((−)◦)) to (22). Since the functor is left exact, together with [20,

Lemma 1.1] we obtain that

0 −→ (H)Xk −→ (Ex)Xk −→ (ISx
)Xk −→ Q −→ 0, (27)

such that supp(Q) ⊆ ∆, where ∆ = Xk \Xk
◦ is the big diagonal. It is also clear that

σ∗
k,◦((ISx)◦) =

4
k6

i=1

q∗i Ix

5/////
Xk\∆

.

Since ∆ is of codimension 2 in Xk, we have that c1((ISx)Xk) = 0. It follows that

c1((Ex)Xk) = c1((H)Xk).
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Moreover, we have by (25) that

c1((H)Xk) =

k'

i=1

q∗i e.

Therefore

c1((Ex)Xk)(h2k−1
Xk = c1((H)Xk)(h2k−1

Xk

= ak(e(h)((h2)k−1

= ak(−1)((h2)k−1.

Since (F )Xk is Sk-invariant, we have c1((F )Xk) =
k)

i=1

q∗i c for some c ∈ NS(X), and

c1((F )Xk)(h2k−1
Xk = ak(c · (h)((h2)k−1.

We have the following two cases:

If c · (h # −1, then we have

c1((F )Xk)(h2k−1
Xk # c1((Ex)Xk)(h2k−1

Xk < 0.

Since rk((F )Xk) < rk((Ex)Xk), it follows that

µ"h
Xk

((F )Xk) < µ"h
Xk

((Ex)Xk).

If c · (h ! 0, then c1((F )Xk)(h2k−1
Xk ! 0.

We choose a (not necessarily Sk-invariant) non-zero µ"h
Xk

-stable reflexive subsheaf of maximal

slope F ′ ⊆ (F )Xk , then µ"h
Xk

(F ′) ! 0. However q∗i OX(e) is µ"h
Xk

-stable for i = 1, . . . , k, and

c1(q
∗
i OX(e))(h2k−1

Xk = ak(e(h)((h2)k−1 = ak(−1)((h2)k−1 < 0.

Hence the only map from F ′ to q∗i OX(e) is zero.

By (27) we obtain a morphism F ′ α→ (ISx)Xk . It is clear that (ISx)Xk is torsion free, so it is
a subsheaf of its double dual (ISx)

∨∨
Xk . We also note that the restriction of (ISx)Xk on Xk \ (∆ ∪

q−1
1 ({x}) ∪ · · · ∪ q−1

k ({x})) is the trivial line bundle, hence

(ISx)
∨∨
Xk = OXk .

Therefore we have

F ′ α→ (ISx)Xk ↩→ OXk .

If α ∕= 0, then the composition of both maps is non-zero, hence the stability forces

µ"h
Xk

(F ′) = 0 = µ"h
Xk

(OXk).

Since F ′ is reflexive, the composition must be the identity map. Since (ISx
)Xk ∕= OXk this is a

contradiction. It follows that α = 0, which implies by (27) that F ′ is a subsheaf of (H)Xk . By (25)
and the above discussion, we can furthermore conclude that F ′ is isomorphic to a subsheaf of the
trivial bundle H1(OX(e))⊗OXk . The stability forces again that

µ"h
Xk

(F ′) = 0 = µ"h
Xk

(OXk)

and F ′ ∼= OXk . Moreover, since all global sections of the trivial bundleH1(OX(e))⊗OXk in (25) are
invariant under the permutation of Sk, we conclude that F

′ itself is also Sk-invariant, which gives
a non-trivial Sk-invariant global section of HXk . This contradicts Lemma 3.13, therefore (Ex)Xk

cannot be destabilized by any Sk-invariant subsheaf, which concludes that Ex is µ"hk
-stable.
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3.4 A smooth connected component

In this subsection, we will interpret the universal sheaf E as a family of stable sheaves on X [n]

whose base is a smooth connected component of the corresponding moduli space. We have shown
above that all the wrong-way fibers Ex of the family E are µ-stable with respect to (hk. We follow
the idea in Theorem 2.8 to show their µ-stability with respect to a certain ample class near (hk.

Theorem 3.15 There exists some ample class H ∈ NS(X [k]) near (hk, such that Ex is µH-stable
for all x ∈ X simultaneously.

Proof. The same as in Theorem 2.8, the value of c = µβ(Ex) is independent of the choice of x ∈ X.
We still define

S := {c1(F ) | F ⊆ Ex for some x ∈ X such that µβ(F ) ! c}.
The proof of the present result is literally the same as the proof of Theorem 2.8, except that the
step which shows that S is a finite set has to be modified.

For this purpose we make a few auxiliary definitions. Let E′
x = G∨ ⊕ ISx for each x ∈ X. We

also define the set

S′ := {c1(F ′) | F ′ ⊆ E′
x for some x ∈ X such that µβ(F

′) ! c}.
We claim that S ⊆ S′.

Indeed, by (22), every subsheaf F ⊆ Ex is an extension of some subsheaf F2 ⊆ ISx
by another

subsheaf F1 ⊆ G∨. It is then clear that F ′ = F1 ⊕F2 is a subsheaf of E′
x, and that c1(F ) = c1(F

′).
If F destabilizes Ex, then F ′ also destabilizes E′

x, which means that every element of S is also in
S′, as desired.

It remains to show that S′ is finite. In fact, since E′
x ⊆ (G∨ ⊕OX[k]) for all x ∈ X, we obtain

that S′ is a subset of

T ′ := {c1(F ′) | F ′ ⊆ (G∨ ⊕OX[k]) such that µβ(F
′) ! c},

which is finite by [7, Theorem 2.29], hence S′ is also finite, which further implies the finiteness of
S. This concludes the proof.

Let H be an ample class that satisfies Theorem 3.15, and M the moduli space of µH -stable
sheaves on X [k] with the same numerical invariants as Ex. Then the universal family E defines a
classifying morphism

f : X −→ M, x *−→ [Ex]. (28)

Similar as Theorem 2.10, we obtain

Theorem 3.16 The classifying morphism (28) defined by the family E identifies X with a smooth
connected component of M.

Proof. For any pair of points x, y ∈ X, since Θ is an equivalence, we have

Ext∗(Fx, Fy) ∼= Ext∗(Ox,Oy);

moreover by Remark 1.7 we have

Ext∗(Ex, Ey) ∼= Ext∗(Fx, Fy)⊗H∗(Pk−1,C).

It is clear that

Ext∗X(Ox,Oy) ∼=

#
Λ∗(TX,x) if x = y

0 if x ∕= y.

Combining the above computations we obtain

HomX[k](Ex, Ey) = 0 for any x, y ∈ X with x ∕= y

and Ext1X[k](Ex, Ex) ∼= TX,x for any x ∈ X.

These imply that f is injective on closed points and that dim(T[Ex]M) = 2 for all x ∈ X. The
claim then follows from an argument similar to the proof of Theorem 2.10.

Remark 3.17 The stable vector bundles constructed in Theorem 2.8 as well as Theorem 3.15 are
not tautological bundles as the rank of a tautological bundle is always divisible by k, but in our
cases the ranks are k + 1 and 2k − 1.

Acknowledgements We thank Nicolas Addington and Andrew Wray for kindly sending us [22]. We also thank
Norbert Hoffmann for communicating to us Lemma 3.5. We are particularly grateful to the anonymous referee who
helped to improve the presentation of the manuscript greatly, and pointed out a mistake in a previous version of
Proposition 3.14. In particular, Lemmas 3.12 and 3.13 in the current version are due to the referee.



Stability of some vector bundles on Hilbert schemes of points on K3 surfaces 21

References

1. Nicolas Addington. New derived symmetries of some hyperkähler varieties. Algebr. Geom., 3(2):223–260, 2016.
2. Nicolas Addington, Will Donovan, and Ciaran Meachan. Moduli spaces of torsion sheaves on K3 surfaces and

derived equivalences. J. Lond. Math. Soc. (2), 93(3):846–865, 2016.
3. Claudio Bartocci, Ugo Bruzzo, and Daniel Hernández Ruipérez. Fourier-Mukai and Nahm transforms in ge-

ometry and mathematical physics, volume 276 of Progress in Mathematics. Birkhäuser Boston, Inc., Boston,
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